| 
| REVERSAL-ADDITION
PALINDROME
TEST ON 
10000505448 |  | Reverse and Add Process: 
 1. Pick a number.
 2. Reverse its digits and add this value to the original number.
 3. If this is not a palindrome, go back to step 2 and repeat.
 
 |  | Let's view this Reverse and Add sequence starting with 10000505448: |  | | 10000505448 + 84450500001
 step 1: 94451005449
 + 94450015449
 step 2: 188901020898
 + 898020109881
 step 3: 1086921130779
 + 9770311296801
 step 4: 10857232427580
 + 08572423275801
 step 5: 19429655703381
 + 18330755692491
 step 6: 37760411395872
 + 27859311406773
 step 7: 65619722802645
 + 54620822791656
 step 8: 120240545594301
 + 103495545042021
 step 9: 223736090636322
 + 223636090637322
 step 10: 447372181273644
 + 446372181273744
 step 11: 893744362547388
 + 883745263447398
 step 12: 1777489625994786
 + 6874995269847771
 step 13: 8652484895842557
 + 7552485984842568
 step 14: 16204970880685125
 + 52158608807940261
 step 15: 68363579688625386
 + 68352688697536386
 step 16: 136716268386161772
 + 277161683862617631
 step 17: 413877952248779403
 + 304977842259778314
 step 18: 718855794508557717
 + 717755805497558817
 step 19: 1436611600006116534
 + 4356116000061166341
 step 20: 5792727600067282875
 + 5782827600067272975
 step 21: 11575555200134555850
 + 05855543100255557511
 step 22: 17431098300390113361
 + 16331109300389013471
 step 23: 33762207600779126832
 + 23862197700670226733
 step 24: 57624405301449353565
 + 56535394410350442675
 step 25: 114159799711799796240
 + 042697997117997951411
 step 26: 156857796829797747651
 + 156747797928697758651
 step 27: 313605594758495506302
 + 203605594857495506313
 step 28: 517211189615991012615
 + 516210199516981112715
 step 29: 1033421389132972125330
 + 0335212792319831243301
 step 30: 1368634181452803368631
 + 1368633082541814368631
 step 31: 2737267263994617737262
 + 2627377164993627627372
 step 32: 5364644428988245364634
 + 4364635428898244464635
 step 33: 9729279857886489829269
 + 9629289846887589729279
 step 34: 19358569704774079558548
 + 84585597047740796585391
 step 35: 103944166752514876143939
 + 939341678415257661449301
 step 36: 1043285845167772537593240
 + 0423957352777615485823401
 step 37: 1467243197945388023416641
 + 1466143208835497913427641
 step 38: 2933386406780885936844282
 + 2824486395880876046833392
 step 39: 5757872802661761983677674
 + 4767763891671662082787575
 step 40: 10525636694333424066465249
 + 94256466042433349663652501
 step 41: 104782102736766773730117750
 + 057711037377667637201287401
 step 42: 162493140114434410931405151
 + 151504139014434411041394261
 step 43: 313997279128868821972799412
 + 214997279128868821972799313
 step 44: 528994558257737643945598725
 + 527895549346737752855499825
 step 45: 1056890107604475396801098550
 + 0558901086935744067010986501
 step 46: 1615791194540219463812085051
 + 1505802183649120454911975161
 step 47: 3121593378189339918724060212
 + 2120604278199339818733951213
 step 48: 5242197656388679737458011425
 + 5241108547379768836567912425
 step 49: 10483306203768448574025923850
 + 05832952047584486730260338401
 step 50: 16316258251352935304286262251
 + 15226268240353925315285261361
 step 51: 31542526491706860619571523612
 + 21632517591606860719462524513
 step 52: 53175044083313721339034048125
 + 52184043093312731338044057135
 step 53: 105359087176626452677078105260
 + 062501870776254626671780953501
 step 54: 167860957952881079348859058761
 + 167850958843970188259759068761
 step 55: 335711916796851267608618127522
 + 225721816806762158697619117533
 step 56: 561433733603613426306237245055
 + 550542732603624316306337334165
 step 57: 1111976466207237742612574579220
 + 0229754752162477327026646791111
 step 58: 1341731218369715069639221370331
 + 1330731229369605179638121371431
 step 59: 2672462447739320249277342741762
 + 2671472437729420239377442642762
 step 60: 5343934885468740488654785384524
 + 4254835874568840478645884393435
 step 61: 9598770760037580967300669777959
 + 9597779660037690857300670778959
 step 62: 19196550420075271824601340556918
 + 81965504310642817257002405569191
 step 63: 101162054730718089081603746126109
 + 901621647306180980817037450261101
 step 64: 1002783702036899069898641196387210
 + 0127836911468989609986302073872001
 step 65: 1130620613505888679884943270259211
 + 1129520723494889768885053160260311
 step 66: 2260141337000778448769996430519522
 + 2259150346999678448770007331410622
 step 67: 4519291684000456897540003761930144
 + 4410391673000457986540004861929154
 step 68: 8929683357000914884080008623859298
 + 8929583268000804884190007533869298
 step 69: 17859266625001719768270016157728596
 + 69582775161007286791710052666295871
 step 70: 87442041786009006559980068824024467
 + 76442042886008995560090068714024478
 step 71: 163884084672018002120070137538048945
 + 549840835731070021200810276480488361
 step 72: 713724920403088023320880414018537306
 + 603735810414088023320880304029427317
 step 73: 1317460730817176046641760718047964623
 + 3264697408170671466406717180370647131
 step 74: 4582158138987847513048477898418611754
 + 4571168148987748403157487898318512854
 step 75: 9153326287975595916205965796737124608
 + 8064217376975695026195955797826233519
 step 76: 17217543664951290942401921594563358127
 + 72185336549512910424909215946634571271
 step 77: 89402880214464201367311137541197929398
 + 89392979114573111376310246441208820498
 step 78: 178795859329037312743621383982406749896
 + 698947604289383126347213730923958597871
 step 79: 877743463618420439090835114906365347767
 + 767743563609411538090934024816364347778
 step 80: 1645487027227831977181769139722729695545
 + 5455969272279319671817791387227207845461
 step 81: 7101456299507151648999560526949937541006
 + 6001457399496250659998461517059926541017
 step 82: 13102913699003402308998022044009864082023
 + 32028046890044022089980320430099631920131
 step 83: 45130960589047424398978342474109496002154
 + 45120069490147424387989342474098506903154
 step 84: 90251030079194848786967684948208002905308
 + 80350920080284948676968784849197003015209
 step 85: 170601950159479797463936469797405005920517
 + 715029500504797964639364797974951059106071
 step 86: 885631450664277762103301267772356065026588
 + 885620560653277762103301267772466054136588
 step 87: 1771252011317555524206602535544822119163176
 + 6713619112284455352066024255557131102521771
 step 88: 8484871123602010876272626791101953221684947
 + 7494861223591011976262726780102063211784848
 step 89: 15979732347193022852535353571204016433469795
 + 59796433461040217535353525822039174323797951
 step 90: 75776165808233240387888879393243190757267746
 + 64776275709134239397888878304233280856167757
 step 91: 140552441517367479785777757697476471613435503
 + 305534316174674796757777587974763715144255041
 step 92: 446086757692042276543555345672240186757690544
 + 445096757681042276543555345672240296757680644
 step 93: 891183515373084553087110691344480483515371188
 + 881173515384084443196011780355480373515381198
 step 94: 1772357030757168996283122471699960857030752386
 + 6832570307580699961742213826998617570307532771
 step 95: 8604927338337868958025336298698578427338285157
 + 7515828337248758968926335208598687338337294068
 step 96: 16120755675586627926951671507297265765675579225
 + 52297557656756279270517615962972668557655702161
 step 97: 68418313332342907197469287470269934323331281386
 + 68318213332343996207478296479170924323331381486
 step 98: 136736526664686903404947583949440858646662662872
 + 278266266646858044949385749404309686466625637631
 step 99: 415002793311544948354333333353750545113288300503
 + 305003882311545057353333333453849445113397200514
 step 100: 720006675623090005707666666807599990226685501017
 + 710105586622099995708666666707500090326576600027
 step 101: 1430112262245190001416333333515100080553262101044
 + 4401012623550800015153333336141000915422622110341
 step 102: 5831124885795990016569666669656100995975884211385
 
 | 
 |  
 | 10000505448 takes 102 iterations / steps to resolve into a 49 digit palindrome. | 
 
 
| REVERSAL-ADDITION
PALINDROME
RECORDS |  Most Delayed Palindromic Number for each digit length
 (Only iteration counts for which no smaller records exist are considered.
My program records only the smallest number that resolves for each distinct iteration count.
For example, there are 18-digit numbers that resolve in 232 iterations,
higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded,
as a smaller [17-digit] number already holds the record for 232 iterations.)
 
 
 
| Digits | Number | Result | 
|---|
 
| 2 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 | 89 187
 1,297
 10,911
 150,296
 9,008,299
 10,309,988
 140,669,390
 1,005,499,526
 10,087,799,570
 100,001,987,765
 1,600,005,969,190
 14,104,229,999,995
 100,120,849,299,260
 1,030,020,097,997,900
 10,442,000,392,399,960
 170,500,000,303,619,996
 1,186,060,307,891,929,990
 
 | solves in 24 iterations. solves in 23 iterations.
 solves in 21 iterations.
 solves in 55 iterations.
 solves in 64 iterations.
 solves in 96 iterations.
 solves in 95 iterations.
 solves in 98 iterations.
 solves in 109 iterations.
 solves in 149 iterations.
 solves in 143 iterations.
 solves in 188 iterations.
 solves in 182 iterations.
 solves in 201 iterations.
 solves in 197 iterations.
 solves in 236 iterations.
 solves in 228 iterations.
 solves in 261 iterations - World Record!
 
 |  | [View all records] | 
|---|
 This reverse and add program was created by Jason Doucette.
 Please visit my Palindromes and World Records page.
 You have permission to use the data from this webpage (with due credit).
 A link to my website is much appreciated. Thank you.
 
 (This program has been run Indeterminable times since Saturday, March 9th, 2002.)
 |