| 
| REVERSAL-ADDITION
PALINDROME
TEST ON 
1050995 |  | Reverse and Add Process: 
 1. Pick a number.
 2. Reverse its digits and add this value to the original number.
 3. If this is not a palindrome, go back to step 2 and repeat.
 
 |  | Let's view this Reverse and Add sequence starting with 1050995: |  | | 1050995 + 5990501
 step 1: 7041496
 + 6941407
 step 2: 13982903
 + 30928931
 step 3: 44911834
 + 43811944
 step 4: 88723778
 + 87732788
 step 5: 176456566
 + 665654671
 step 6: 842111237
 + 732111248
 step 7: 1574222485
 + 5842224751
 step 8: 7416447236
 + 6327446147
 step 9: 13743893383
 + 38339834731
 step 10: 52083728114
 + 41182738025
 step 11: 93266466139
 + 93166466239
 step 12: 186432932378
 + 873239234681
 step 13: 1059672167059
 + 9507612769501
 step 14: 10567284936560
 + 06563948276501
 step 15: 17131233213061
 + 16031233213171
 step 16: 33162466426232
 + 23262466426133
 step 17: 56424932852365
 + 56325823942465
 step 18: 112750756794830
 + 038497657057211
 step 19: 151248413852041
 + 140258314842151
 step 20: 291506728694192
 + 291496827605192
 step 21: 583003556299384
 + 483992655300385
 step 22: 1066996211599769
 + 9679951126996601
 step 23: 10746947338596370
 + 07369583374964701
 step 24: 18116530713561071
 + 17016531703561181
 step 25: 35133062417122252
 + 25222171426033153
 step 26: 60355233843155405
 + 50455134833255306
 step 27: 110810368676410711
 + 117014676863018011
 step 28: 227825045539428722
 + 227824935540528722
 step 29: 455649981079957444
 + 444759970189946554
 step 30: 900409951269903998
 + 899309962159904009
 step 31: 1799719913429808007
 + 7008089243199179971
 step 32: 8807809156628987978
 + 8797898266519087088
 step 33: 17605707423148075066
 + 66057084132470750671
 step 34: 83662791555618825737
 + 73752881655519726638
 step 35: 157415673211138552375
 + 573255831112376514751
 step 36: 730671504323515067126
 + 621760515323405176037
 step 37: 1352432019646920243163
 + 3613420296469102342531
 step 38: 4965852316116022585694
 + 4965852206116132585694
 step 39: 9931704522232155171388
 + 8831715512322254071399
 step 40: 18763420034554409242787
 + 78724290445543002436781
 step 41: 97487710480097411679568
 + 86597611479008401778479
 step 42: 184085321959105813458047
 + 740854318501959123580481
 step 43: 924939640461064937038528
 + 825830739460164046939429
 step 44: 1750770379921228983977957
 + 7597793898221299730770571
 step 45: 9348564278142528714748528
 + 8258474178252418724658439
 step 46: 17607038456394947439406967
 + 76960493474949365483070671
 step 47: 94567531931344312922477638
 + 83677422921344313913576549
 step 48: 178244954852688626836054187
 + 781450638626886258459442871
 step 49: 959695593479574885295497058
 + 850794592588475974395596959
 step 50: 1810490186068050859691094017
 + 7104901969580508606810940181
 step 51: 8915392155648559466502034198
 + 8914302056649558465512935198
 step 52: 17829694212298117932014969396
 + 69396941023971189221249692871
 step 53: 87226635236269307153264662267
 + 76226646235170396263253662278
 step 54: 163453281471439703416518324545
 + 545423815614307934174182354361
 step 55: 708877097085747637590700678906
 + 609876007095736747580790778807
 step 56: 1318753104181484385171491457713
 + 3177541941715834841814013578131
 step 57: 4496295045897319226985505035844
 + 4485305055896229137985405926944
 step 58: 8981600101793548364970910962788
 + 8872690190794638453971010061898
 step 59: 17854290292588186818941921024686
 + 68642012914981868188529209245871
 step 60: 86496303207570055007471130270557
 + 75507203117470055007570230369468
 step 61: 162003506325040110015041360640025
 + 520046063140510011040523605300261
 step 62: 682049569465550121055564965940286
 
 | 
 |  
 | 1050995 takes 62 iterations / steps to resolve into a 33 digit palindrome. | 
 
 
| REVERSAL-ADDITION
PALINDROME
RECORDS |  Most Delayed Palindromic Number for each digit length
 (Only iteration counts for which no smaller records exist are considered.
My program records only the smallest number that resolves for each distinct iteration count.
For example, there are 18-digit numbers that resolve in 232 iterations,
higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded,
as a smaller [17-digit] number already holds the record for 232 iterations.)
 
 
 
| Digits | Number | Result | 
|---|
 
| 2 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 | 89 187
 1,297
 10,911
 150,296
 9,008,299
 10,309,988
 140,669,390
 1,005,499,526
 10,087,799,570
 100,001,987,765
 1,600,005,969,190
 14,104,229,999,995
 100,120,849,299,260
 1,030,020,097,997,900
 10,442,000,392,399,960
 170,500,000,303,619,996
 1,186,060,307,891,929,990
 
 | solves in 24 iterations. solves in 23 iterations.
 solves in 21 iterations.
 solves in 55 iterations.
 solves in 64 iterations.
 solves in 96 iterations.
 solves in 95 iterations.
 solves in 98 iterations.
 solves in 109 iterations.
 solves in 149 iterations.
 solves in 143 iterations.
 solves in 188 iterations.
 solves in 182 iterations.
 solves in 201 iterations.
 solves in 197 iterations.
 solves in 236 iterations.
 solves in 228 iterations.
 solves in 261 iterations - World Record!
 
 |  | [View all records] | 
|---|
 This reverse and add program was created by Jason Doucette.
 Please visit my Palindromes and World Records page.
 You have permission to use the data from this webpage (with due credit).
 A link to my website is much appreciated. Thank you.
 
 (This program has been run Indeterminable times since Saturday, March 9th, 2002.)
 |