Base 3: Cycles Lengths: Even Digit Sets

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
012

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Nodes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
20 cycles-----------------------
41 cycle -12×
---------------------
61 cycle --25×
--------------------
81 cycle 42×
----------------------
102 cycles23×
--40×
-------------------
122 cycles23×
65×
---------------------
143 cycles79×
38×
---------------------
164 cycles44×
38×
68×
--------------------
185 cycles44×
38×
33×
-72×
------------------
206 cycles60×
38×
130×
--------------------
227 cycles52×
126×
95×
--------------------
248 cycles52×
75×
95×
-100×
------------------
269 cycles156×
75×
95×
-49×
------------------
2810 cycles89×
75×
95×
-49×
124×
-----------------
3011 cycles89×
75×
215×
-49×
65×
-----------------
3214 cycles105×
107×
148×
84×
49×
65×
-----------------
3415 cycles97×
91×
148×
41×
49×
201×
-----------------
3616 cycles97×
91×
148×
250×
49×
65×
-----------------
3818 cycles129×
91×
268×
175×
49×
65×
-----------------
4019 cycles113×
91×
201×
175×
49×
65×
--164×
--------------
4220 cycles113×
259×
201×
175×
49×
65×
--81×
--------------
4423 cycles129×
160×
249×
175×
49×
189×
--81×
--------------
4624 cycles121×
160×
225×
175×
233×
130×
--81×
--------------
4825 cycles121×
160×
225×
175×
134×
130×
--81×
-196×
------------
5026 cycles321×
160×
225×
175×
134×
130×
--81×
-97×
------------
5228 cycles190×
192×
225×
175×
134×
130×
--81×
204×
97×
------------
5429 cycles190×
176×
225×
175×
134×
346×
--81×
113×
97×
------------
5632 cycles206×
176×
273×
175×
134×
231×
--245×
113×
97×
------------
5833 cycles198×
176×
481×
175×
134×
231×
--162×
113×
97×
------------
6034 cycles198×
176×
350×
175×
134×
231×
--162×
113×
97×
--252×
---------
6237 cycles230×
240×
350×
327×
134×
231×
--162×
113×
97×
--129×
---------
6440 cycles214×
208×
350×
244×
394×
231×
--162×
113×
97×
--129×
---------
6641 cycles214×
208×
350×
244×
263×
231×
264×
-162×
113×
97×
--129×
---------
6844 cycles230×
208×
350×
244×
648×
231×
--162×
113×
97×
--129×
---------
7046 cycles222×
208×
350×
524×
517×
231×
--162×
113×
97×
--129×
---------
7249 cycles222×
240×
398×
377×
517×
231×
--162×
113×
97×
212×
-129×
---------
7451 cycles286×
224×
606×
377×
517×
231×
--162×
113×
97×
105×
-129×
---------
7652 cycles254×
224×
475×
377×
517×
231×
--162×
113×
97×
105×
-129×
---316×
-----
7853 cycles254×
224×
475×
377×
517×
231×
--474×
113×
97×
105×
-129×
---161×
-----
8056 cycles270×
224×
475×
377×
517×
327×
--311×
113×
97×
317×
-129×
---161×
-----
8257 cycles262×
552×
475×
377×
517×
279×
--311×
113×
97×
210×
-129×
---161×
-----
8459 cycles262×
357×
475×
377×
517×
279×
--311×
477×
97×
210×
-129×
---161×
-----
8662 cycles294×
357×
571×
377×
517×
495×
--311×
306×
97×
210×
-129×
---161×
-----
8865 cycles278×
357×
523×
377×
517×
380×
356×
-311×
306×
97×
210×
-129×
---161×
-----
9066 cycles278×
357×
523×
377×
877×
380×
177×
-311×
306×
97×
210×
-129×
---161×
-----
9271 cycles294×
389×
571×
441×
682×
380×
177×
-311×
306×
97×
430×
-129×
---161×
-----
9472 cycles286×
373×
547×
409×
682×
380×
177×
-311×
306×
473×
323×
-129×
---161×
-----
9673 cycles286×
373×
547×
409×
682×
380×
177×
-311×
306×
278×
323×
-129×
---161×
----388×
9874 cycles678×
373×
547×
409×
682×
380×
177×
-311×
306×
278×
323×
-129×
---161×
----193×
10076 cycles419×
373×
595×
409×
682×
380×
177×
-311×
306×
278×
323×
-129×
---161×
--412×
-193×