| 
| REVERSAL-ADDITION
PALINDROME
TEST ON 
1007377 |  | Reverse and Add Process: 
 1. Pick a number.
 2. Reverse its digits and add this value to the original number.
 3. If this is not a palindrome, go back to step 2 and repeat.
 
 |  | Let's view this Reverse and Add sequence starting with 1007377: |  | | 1007377 + 7737001
 step 1: 8744378
 + 8734478
 step 2: 17478856
 + 65887471
 step 3: 83366327
 + 72366338
 step 4: 155732665
 + 566237551
 step 5: 721970216
 + 612079127
 step 6: 1334049343
 + 3439404331
 step 7: 4773453674
 + 4763543774
 step 8: 9536997448
 + 8447996359
 step 9: 17984993807
 + 70839948971
 step 10: 88824942778
 + 87724942888
 step 11: 176549885666
 + 666588945671
 step 12: 843138831337
 + 733138831348
 step 13: 1576277662685
 + 5862667726751
 step 14: 7438945389436
 + 6349835498347
 step 15: 13788780887783
 + 38778808788731
 step 16: 52567589676514
 + 41567698576525
 step 17: 94135288253039
 + 93035288253149
 step 18: 187170576506188
 + 881605675071781
 step 19: 1068776251577969
 + 9697751526778601
 step 20: 10766527778356570
 + 07565387772566701
 step 21: 18331915550923271
 + 17232905551913381
 step 22: 35564821102836652
 + 25663820112846553
 step 23: 61228641215683205
 + 50238651214682216
 step 24: 111467292430365421
 + 124563034292764111
 step 25: 236030326723129532
 + 235921327623030632
 step 26: 471951654346160164
 + 461061643456159174
 step 27: 933013297802319338
 + 833913208792310339
 step 28: 1766926506594629677
 + 7769264956056296671
 step 29: 9536191462650926348
 + 8436290562641916359
 step 30: 17972482025292842707
 + 70724829252028427971
 step 31: 88697311277321270678
 + 87607212377211379688
 step 32: 176304523654532650366
 + 663056235456325403671
 step 33: 839360759110858054037
 + 730450858011957063938
 step 34: 1569811617122815117975
 + 5797115182217161189651
 step 35: 7366926799339976307626
 + 6267036799339976296637
 step 36: 13633963598679952604263
 + 36240625997689536933631
 step 37: 49874589596369489537894
 + 49873598496369598547894
 step 38: 99748188092739088085788
 + 88758088093729088184799
 step 39: 188506276186468176270587
 + 785072671864681672605881
 step 40: 973578948051149848876468
 + 864678848941150849875379
 step 41: 1838257796992300698751847
 + 7481578960032996977528381
 step 42: 9319836757025297676280228
 + 8220826767925207576389139
 step 43: 17540663524950505252669367
 + 76396625250505942536604571
 step 44: 93937288775456447789273938
 + 83937298774465457788273939
 step 45: 177874587549921905577547877
 + 778745775509129945785478771
 step 46: 956620363059051851363026648
 + 846620363158150950363026659
 step 47: 1803240726217202801726053307
 + 7033506271082027126270423081
 step 48: 8836746997299229927996476388
 
 | 
 |  
 | 1007377 takes 48 iterations / steps to resolve into a 28 digit palindrome. | 
 
 
| REVERSAL-ADDITION
PALINDROME
RECORDS |  Most Delayed Palindromic Number for each digit length
 (Only iteration counts for which no smaller records exist are considered.
My program records only the smallest number that resolves for each distinct iteration count.
For example, there are 18-digit numbers that resolve in 232 iterations,
higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded,
as a smaller [17-digit] number already holds the record for 232 iterations.)
 
 
 
| Digits | Number | Result | 
|---|
 
| 2 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 | 89 187
 1,297
 10,911
 150,296
 9,008,299
 10,309,988
 140,669,390
 1,005,499,526
 10,087,799,570
 100,001,987,765
 1,600,005,969,190
 14,104,229,999,995
 100,120,849,299,260
 1,030,020,097,997,900
 10,442,000,392,399,960
 170,500,000,303,619,996
 1,186,060,307,891,929,990
 
 | solves in 24 iterations. solves in 23 iterations.
 solves in 21 iterations.
 solves in 55 iterations.
 solves in 64 iterations.
 solves in 96 iterations.
 solves in 95 iterations.
 solves in 98 iterations.
 solves in 109 iterations.
 solves in 149 iterations.
 solves in 143 iterations.
 solves in 188 iterations.
 solves in 182 iterations.
 solves in 201 iterations.
 solves in 197 iterations.
 solves in 236 iterations.
 solves in 228 iterations.
 solves in 261 iterations - World Record!
 
 |  | [View all records] | 
|---|
 This reverse and add program was created by Jason Doucette.
 Please visit my Palindromes and World Records page.
 You have permission to use the data from this webpage (with due credit).
 A link to my website is much appreciated. Thank you.
 
 (This program has been run Indeterminable times since Saturday, March 9th, 2002.)
 |