REVERSAL-ADDITION
PALINDROME
TEST ON
147996
|
Reverse and Add Process:
1. Pick a number.
2. Reverse its digits and add this value to the original number.
3. If this is not a palindrome, go back to step 2 and repeat.
| Let's view this Reverse and Add sequence starting with 147996: |
147996
+ 699741
step 1: 847737
+ 737748
step 2: 1585485
+ 5845851
step 3: 7431336
+ 6331347
step 4: 13762683
+ 38626731
step 5: 52389414
+ 41498325
step 6: 93887739
+ 93778839
step 7: 187666578
+ 875666781
step 8: 1063333359
+ 9533333601
step 9: 10596666960
+ 06966669501
step 10: 17563336461
+ 16463336571
step 11: 34026673032
+ 23037662043
step 12: 57064335075
+ 57053346075
step 13: 114117681150
+ 051186711411
step 14: 165304392561
+ 165293403561
step 15: 330597796122
+ 221697795033
step 16: 552295591155
+ 551195592255
step 17: 1103491183410
+ 0143811943011
step 18: 1247303126421
+ 1246213037421
step 19: 2493516163842
+ 2483616153942
step 20: 4977132317784
+ 4877132317794
step 21: 9854264635578
+ 8755364624589
step 22: 18609629260167
+ 76106292690681
step 23: 94715921950848
+ 84805912951749
step 24: 179521834902597
+ 795209438125971
step 25: 974731273028568
+ 865820372137479
step 26: 1840551645166047
+ 7406615461550481
step 27: 9247167106716528
+ 8256176017617429
step 28: 17503343124333957
+ 75933342134330571
step 29: 93436685258664528
+ 82546685258663439
step 30: 175983370517327967
+ 769723715073389571
step 31: 945707085590717538
+ 835717095580707549
step 32: 1781424181171425087
+ 7805241711814241871
step 33: 9586665892985666958
+ 8596665892985666859
step 34: 18183331785971333817
+ 71833317958713338181
step 35: 90016649744684671998
+ 89917648644794661009
step 36: 179934298389479333007
+ 700333974983892439971
step 37: 880268273373371772978
+ 879277173373372862088
step 38: 1759545446746744635066
+ 6605364476476445459571
step 39: 8364909923223190094637
+ 7364900913223299094638
step 40: 15729810836446489189275
+ 57298198464463801892751
step 41: 73028009300910291082026
+ 62028019201900390082037
step 42: 135056028502810681164063
+ 360461186018205820650531
step 43: 495517214521016501814594
+ 495418105610125412715594
step 44: 990935320131141914530188
+ 881035419141131023539099
step 45: 1871970739272272938069287
+ 7829608392722729370791781
step 46: 9701579131995002308861068
+ 8601688032005991319751079
step 47: 18303267164000993628612147
+ 74121682639900046176230381
step 48: 92424949803901039804842528
+ 82524840893010930894942429
step 49: 174949790696911970699784957
+ 759487996079119696097949471
step 50: 934437786776031666797734428
+ 824437797666130677687734439
step 51: 1758875584442162344485468867
+ 7688645844432612444855788571
step 52: 9447521428874774789341257438
+ 8347521439874774788241257449
step 53: 17795042868749549577582514887
+ 78841528577594594786824059771
step 54: 96636571446344144364406574658
+ 85647560446344144364417563669
step 55: 182284131892688288728824138327
+ 723831428827882886298131482281
step 56: 906115560720571175026955620608
+ 806026559620571175027065511609
step 57: 1712142120341142350054021132217
+ 7122311204500532411430212412171
step 58: 8834453324841674761484233544388
|
|
147996 takes 58 iterations / steps to resolve into a 31 digit palindrome.
|
REVERSAL-ADDITION
PALINDROME
RECORDS
|
Most Delayed Palindromic Number for each digit length
(Only iteration counts for which no smaller records exist are considered.
My program records only the smallest number that resolves for each distinct iteration count.
For example, there are 18-digit numbers that resolve in 232 iterations,
higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded,
as a smaller [17-digit] number already holds the record for 232 iterations.)
Digits | Number | Result |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
89
187
1,297
10,911
150,296
9,008,299
10,309,988
140,669,390
1,005,499,526
10,087,799,570
100,001,987,765
1,600,005,969,190
14,104,229,999,995
100,120,849,299,260
1,030,020,097,997,900
10,442,000,392,399,960
170,500,000,303,619,996
1,186,060,307,891,929,990
|
solves in 24 iterations.
solves in 23 iterations.
solves in 21 iterations.
solves in 55 iterations.
solves in 64 iterations.
solves in 96 iterations.
solves in 95 iterations.
solves in 98 iterations.
solves in 109 iterations.
solves in 149 iterations.
solves in 143 iterations.
solves in 188 iterations.
solves in 182 iterations.
solves in 201 iterations.
solves in 197 iterations.
solves in 236 iterations.
solves in 228 iterations.
solves in 261 iterations - World Record!
|
[View all records] |
This reverse and add program was created by Jason Doucette.
Please visit my Palindromes and World Records page.
You have permission to use the data from this webpage (with due credit). A link to my website is much appreciated. Thank you.
(This program has been run 2,542,471 times since Saturday, March 9th, 2002.)
|