| 
REVERSAL-ADDITION
PALINDROME
TEST ON 
15002893
 |   
Reverse and Add Process:
  
1. Pick a number. 
2. Reverse its digits and add this value to the original number. 
3. If this is not a palindrome, go back to step 2 and repeat. 
 |  | Let's view this Reverse and Add sequence starting with 15002893: |  
15002893 
+ 39820051 
step 1: 54822944 
+ 44922845 
step 2: 99745789 
+ 98754799 
step 3: 198500588 
+ 885005891 
step 4: 1083506479 
+ 9746053801 
step 5: 10829560280 
+ 08206592801 
step 6: 19036153081 
+ 18035163091 
step 7: 37071316172 
+ 27161317073 
step 8: 64232633245 
+ 54233623246 
step 9: 118466256491 
+ 194652664811 
step 10: 313118921302 
+ 203129811313 
step 11: 516248732615 
+ 516237842615 
step 12: 1032486575230 
+ 0325756842301 
step 13: 1358243417531 
+ 1357143428531 
step 14: 2715386846062 
+ 2606486835172 
step 15: 5321873681234 
+ 4321863781235 
step 16: 9643737462469 
+ 9642647373469 
step 17: 19286384835938 
+ 83953848368291 
step 18: 103240233204229 
+ 922402332042301 
step 19: 1025642565246530 
+ 0356425652465201 
step 20: 1382068217711731 
+ 1371177128602831 
step 21: 2753245346314562 
+ 2654136435423572 
step 22: 5407381781738134 
+ 4318371871837045 
step 23: 9725753653575179 
+ 9715753563575279 
step 24: 19441507217150458 
+ 85405171270514491 
step 25: 104846678487664949 
+ 949466784876648401 
step 26: 1054313463364313350 
+ 0533134633643134501 
step 27: 1587448097007447851 
+ 1587447007908447851 
step 28: 3174895104915895702 
+ 2075985194015984713 
step 29: 5250880298931880415 
+ 5140881398920880525 
step 30: 10391761697852760940 
+ 04906725879616719301 
step 31: 15298487577469480241 
+ 14208496477578489251 
step 32: 29506984055047969492 
+ 29496974055048960592 
step 33: 59003958110096930084 
+ 48003969001185930095 
step 34: 107007927111282860179 
+ 971068282111729700701 
step 35: 1078076209223012560880 
+ 0880652103229026708701 
step 36: 1958728312452039269581 
+ 1859629302542138278591 
step 37: 3818357614994177548172 
+ 2718457714994167538183 
step 38: 6536815329988345086355 
+ 5536805438899235186356 
step 39: 12073620768887580272711 
+ 11727208578886702637021 
step 40: 23800829347774282909732 
+ 23790928247774392800832 
step 41: 47591757595548675710564 
+ 46501757684559575719574 
step 42: 94093515280108251430138 
+ 83103415280108251539049 
step 43: 177196930560216502969187 
+ 781969205612065039691771 
step 44: 959166136172281542660958 
+ 859066245182271631661959 
step 45: 1818232381354553174322917 
+ 7192234713554531832328181 
step 46: 9010467094909085006651098 
+ 8901566005809094907640109 
step 47: 17912033100718179914291207 
+ 70219241997181700133021971 
step 48: 88131275097899880047313178 
+ 87131374008899879057213188 
step 49: 175262649106799759104526366 
+ 663625401957997601946262571 
step 50: 838888051064797361050788937 
+ 739887050163797460150888838 
step 51: 1578775101228594821201677775 
+ 5777761021284958221015778751 
step 52: 7356536122513553042217456526 
+ 6256547122403553152216356537 
step 53: 13613083244917106194433813063 
+ 36031833449160171944238031631 
step 54: 49644916694077278138671844694 
+ 49644817683187277049661944694 
step 55: 99289734377264555188333789388 
+ 88398733388155546277343798299 
step 56: 187688467765420101465677587687 
+ 786785776564101024567764886781 
step 57: 974474244329521126033442474468 
+ 864474244330621125923442474479 
step 58: 1838948488660142251956884948947 
+ 7498494886591522410668848498381 
step 59: 9337443375251664662625733447328 
+ 8237443375262664661525733447339 
step 60: 17574886750514329324151466894667 
+ 76649866415142392341505768847571 
step 61: 94224753165656721665657235742238 
+ 83224753275656612765656135742249 
step 62: 177449506441313334431313371484487 
+ 784484173313134433313144605944771 
step 63: 961933679754447767744457977429258 
+ 852924779754447767744457976339169 
step 64: 1814858459508895535488915953768427 
+ 7248673595198845355988059548584181 
step 65: 9063532054707740891476975502352608 
+ 8062532055796741980477074502353609 
step 66: 17126064110504482871954050004706217 
+ 71260740005045917828440501146062171 
step 67: 88386804115550400700394551150768388 
+ 88386705115549300700405551140868388 
step 68: 176773509231099701400800102291636776 
+ 677636192201008004107990132905377671 
step 69: 854409701432107705508790235197014447 
+ 744410791532097805507701234107904458 
step 70: 1598820492964205511016491469304918905 
+ 5098194039641946101155024692940288951 
step 71: 6697014532606151612171516162245207856 
+ 6587025422616151712161516062354107966 
step 72: 13284039955222303324333032224599315822 
+ 22851399542223033342330322255993048231 
step 73: 36135439497445336666663354480592364053 
+ 35046329508445336666663354479493453163 
step 74: 71181769005890673333326708960085817216 
+ 61271858006980762333337609850096718117 
step 75: 132453627012871435666664318810182535333 
+ 333535281018813466666534178210726354231 
step 76: 465988908031684902333198497020908889564 
+ 465988809020794891333209486130809889564 
step 77: 931977717052479793666407983151718779128 
+ 821977817151389704666397974250717779139 
step 78: 1753955534203869498332805957402436558267 
+ 7628556342047595082338949683024355593571 
step 79: 9382511876251464580671755640426792151838 
+ 8381512976240465571760854641526781152839 
step 80: 17764024852491930152432610281953573304677 
+ 77640337535918201623425103919425842046771 
step 81: 95404362388410131775857714201379415351448 
+ 84415351497310241775857713101488326340459 
step 82: 179819713885720373551715427302867741691907 
+ 709196147768203724517155373027588317918971 
step 83: 889015861653924098068870800330456059610878 
+ 878016950654033008078860890429356168510988 
step 84: 1767032812307957106147731690759812228121866 
+ 6681218222189570961377416017597032182307671 
step 85: 8448251034497528067525147708356844410429537 
+ 7359240144486538077415257608257944301528448 
step 86: 15807491178984066144940405316614788711957985 
+ 58975911788741661350404944166048987119470851 
step 87: 74783402967725727495345349482663775831428836 
+ 63882413857736628494354359472752776920438747 
step 88: 138665816825462355989699708955416552751867583 
+ 385768157255614559807996989553264528618566831 
step 89: 524433974081076915797696698508681081370434414 
+ 414434073180186805896696797519670180479334425 
step 90: 938868047261263721694393496028351261849768839 
+ 938867948162153820694393496127362162740868839 
step 91: 1877735995423417542388786992155713424590637678 
+ 8767360954243175512996878832457143245995377781 
step 92: 10645096949666593055385665824612856670586015459 
+ 95451068507665821642856658355039566694969054601 
step 93: 106096165457332414698242324179652423365555070060 
+ 060070555563324256971423242896414233754561690601 
step 94: 166166721020656671669665567076066657120116760661 
+ 166067611021756660670765566966176656020127661661 
step 95: 332234332042413332340431134042243313140244422322 
+ 223224442041313342240431134043233314240233432233 
step 96: 555458774083726674580862268085476627380477854555 
 |  
  |  
 | 
15002893 takes 96 iterations / steps to resolve into a 48 digit palindrome.
 |  
  
| 
REVERSAL-ADDITION
PALINDROME
RECORDS
 |   
 
Most Delayed Palindromic Number for each digit length 
(Only iteration counts for which no smaller records exist are considered.
My program records only the smallest number that resolves for each distinct iteration count.
For example, there are 18-digit numbers that resolve in 232 iterations,
higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded,
as a smaller [17-digit] number already holds the record for 232 iterations.)
  
| Digits | Number | Result |  
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 | 
89 
187 
1,297 
10,911 
150,296 
9,008,299 
10,309,988 
140,669,390 
1,005,499,526 
10,087,799,570 
100,001,987,765 
1,600,005,969,190 
14,104,229,999,995 
100,120,849,299,260 
1,030,020,097,997,900 
10,442,000,392,399,960 
170,500,000,303,619,996 
1,186,060,307,891,929,990 
 | 
solves in 24 iterations. 
solves in 23 iterations. 
solves in 21 iterations. 
solves in 55 iterations. 
solves in 64 iterations. 
solves in 96 iterations. 
solves in 95 iterations. 
solves in 98 iterations. 
solves in 109 iterations. 
solves in 149 iterations. 
solves in 143 iterations. 
solves in 188 iterations. 
solves in 182 iterations. 
solves in 201 iterations. 
solves in 197 iterations. 
solves in 236 iterations. 
solves in 228 iterations. 
solves in 261 iterations - World Record! 
 | 
 
| [View all records] |  
  
This reverse and add program was created by Jason Doucette. 
Please visit my Palindromes and World Records page. 
You have permission to use the data from this webpage (with due credit). A link to my website is much appreciated. Thank you. 
 (This program has been run Indeterminable times since Saturday, March 9th, 2002.)
 |