| 
REVERSAL-ADDITION
PALINDROME
TEST ON 
70269
 |   
Reverse and Add Process:
  
1. Pick a number. 
2. Reverse its digits and add this value to the original number. 
3. If this is not a palindrome, go back to step 2 and repeat. 
 |  | Let's view this Reverse and Add sequence starting with 70269: |  
70269 
+ 96207 
step 1: 166476 
+ 674661 
step 2: 841137 
+ 731148 
step 3: 1572285 
+ 5822751 
step 4: 7395036 
+ 6305937 
step 5: 13700973 
+ 37900731 
step 6: 51601704 
+ 40710615 
step 7: 92312319 
+ 91321329 
step 8: 183633648 
+ 846336381 
step 9: 1029970029 
+ 9200799201 
step 10: 10230769230 
+ 03296703201 
step 11: 13527472431 
+ 13427472531 
step 12: 26954944962 
+ 26944945962 
step 13: 53899890924 
+ 42909899835 
step 14: 96809790759 
+ 95709790869 
step 15: 192519581628 
+ 826185915291 
step 16: 1018705496919 
+ 9196945078101 
step 17: 10215650575020 
+ 02057505651201 
step 18: 12273156226221 
+ 12262265137221 
step 19: 24535421363442 
+ 24436312453542 
step 20: 48971733816984 
+ 48961833717984 
step 21: 97933567534968 
+ 86943576533979 
step 22: 184877144068947 
+ 749860441778481 
step 23: 934737585847428 
+ 824748585737439 
step 24: 1759486171584867 
+ 7684851716849571 
step 25: 9444337888434438 
+ 8344348887334449 
step 26: 17788686775768887 
+ 78886757768688771 
step 27: 96675444544457658 
+ 85675444544457669 
step 28: 182350889088915327 
+ 723519880988053281 
step 29: 905870770076968608 
+ 806869670077078509 
step 30: 1712740440154047117 
+ 7117404510440472171 
step 31: 8830144950594519288 
+ 8829154950594410388 
step 32: 17659299901188929676 
+ 67692988110999295671 
step 33: 85352288012188225347 
+ 74352288121088225358 
step 34: 159704576133276450705 
+ 507054672331675407951 
step 35: 666759248464951858656 
+ 656858159464842957666 
step 36: 1323617407929794816322 
+ 2236184979297047163231 
step 37: 3559802387226841979553 
+ 3559791486227832089553 
step 38: 7119593873454674069106 
+ 6019604764543783959117 
step 39: 13139198637998458028223 
+ 32282085489973689193131 
step 40: 45421284127972147221354 
+ 45312274127972148212454 
step 41: 90733558255944295433808 
+ 80833459244955285533709 
step 42: 171567017500899580967517 
+ 715769085998005710765171 
step 43: 887336103498905291732688 
+ 886237192509894301633788 
step 44: 1773573296008799593366476 
+ 6746633959978006923753771 
step 45: 8520207255986806517120247 
+ 7420217156086895527020258 
step 46: 15940424412073702044140505 
+ 50504144020737021442404951 
step 47: 66444568432810723486545456 
+ 65454568432701823486544466 
step 48: 131899136865512546973089922 
+ 229980379645215568631998131 
step 49: 361879516510728115605088053 
+ 350880506511827015615978163 
step 50: 712760023022555131221066216 
+ 612660122131555220320067217 
step 51: 1325420145154110351541133433 
+ 3343311451530114515410245231 
step 52: 4668731596684224866951378664 
 |  
  |  
 | 
70269 takes 52 iterations / steps to resolve into a 28 digit palindrome.
 |  
  
| 
REVERSAL-ADDITION
PALINDROME
RECORDS
 |   
 
Most Delayed Palindromic Number for each digit length 
(Only iteration counts for which no smaller records exist are considered.
My program records only the smallest number that resolves for each distinct iteration count.
For example, there are 18-digit numbers that resolve in 232 iterations,
higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded,
as a smaller [17-digit] number already holds the record for 232 iterations.)
  
| Digits | Number | Result |  
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 | 
89 
187 
1,297 
10,911 
150,296 
9,008,299 
10,309,988 
140,669,390 
1,005,499,526 
10,087,799,570 
100,001,987,765 
1,600,005,969,190 
14,104,229,999,995 
100,120,849,299,260 
1,030,020,097,997,900 
10,442,000,392,399,960 
170,500,000,303,619,996 
1,186,060,307,891,929,990 
 | 
solves in 24 iterations. 
solves in 23 iterations. 
solves in 21 iterations. 
solves in 55 iterations. 
solves in 64 iterations. 
solves in 96 iterations. 
solves in 95 iterations. 
solves in 98 iterations. 
solves in 109 iterations. 
solves in 149 iterations. 
solves in 143 iterations. 
solves in 188 iterations. 
solves in 182 iterations. 
solves in 201 iterations. 
solves in 197 iterations. 
solves in 236 iterations. 
solves in 228 iterations. 
solves in 261 iterations - World Record! 
 | 
 
| [View all records] |  
  
This reverse and add program was created by Jason Doucette. 
Please visit my Palindromes and World Records page. 
You have permission to use the data from this webpage (with due credit). A link to my website is much appreciated. Thank you. 
 (This program has been run Indeterminable times since Saturday, March 9th, 2002.)
 |