| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | # Full Cycles (excluding zero) |
Max Cycle Length |
Longest Full Cycles (excluding zero) (bold = exactly one cycle [excluding zero]) |
|---|---|---|---|
| 1 | 0 cycles | - | - |
| 2 | 4 cycles | 9 nodes | ⮎ 9ς → θJ → Μd → XΣ → jΖ → Lζ → Θh → Pβ → zp ⮌ |
| 3 | 1 cycle | 2 nodes | ⮎ tБv → uБu ⮌ |
| 4 | 112 cycles | 14 nodes | ⮎ HEμλ → ΧΡXU → riΖy → N6τε → ξΕjE → ΩKζS → Κutg → T0АΨ → Аsv2 → ψ2ψ4 → φσ76 → πλFC → δΤVO → ΔmΒm ⮌ |
| 5 | 1 cycle | 4 nodes | ⮎ ΞaБΞc → ΟaБΞb → ΟcБΜb → ΞbБΝc ⮌ |
| 6 | 6 cycles | 198 nodes | ⮎ H73χτλ → τνΡXE8 → μΨiΖSG → ΥuMδuW → ΖmББΒk → ΕΓ3χml → τJFλθ8 → μΥΜcVG → ΥoYΠΑW → nhBοΘΓ → δQEμαO → ΧΔxqlU → rI6τιy → ξΟ6τaE → ξΩdΛRE → ΩwWΣsS → vl3χΔu → τI0Аι8 → АμΞaF2 → ψΦcΜU4 → τqYΠy8 → μh7σΘG → μΥPαVG → ΥznΑpW → nD9ρξΓ → θαEμQK → ΧΜxqdU → rY6τΡy → ξi6τΗE → ξΩNγRE → ΩΔvslS → vI2ψιu → φΟ0Аa6 → АπdΛB2 → ψεWΣM4 → τΗkΔi8 → μOIθγG → ΥΞΒmbW → ncEμΝΓ → ΧaEμΟU → ΧrdΛxU → rX5υΣy → πk6τΕC → ξδJηNE → ΩΜΔkdS → vYIθΡu → Ξi0АΗc → АbNγΞ2 → ψΔbΝl4 → τbHιΞ8 → μΠbΝZG → ΥgaΞΙW → ndRΨΜΓ → vYEμΡu → Χi0АΗU → АrNγx2 → ψΔ5υl4 → τπHιB8 → μεΟZMG → ΥΗeΚiW → nVNγΥΓ → ΔoEμΑm → ΧHBοκU → δΡqxYO → Δi6τΗm → ξOGκγE → ΩΣΒmXS → vkEμΕu → ΧK0АηU → АΛqxe2 → ψW6τΤ4 → τξlΓD8 → μαGκQG → ΥΣxqXW → nk6τΕΓ → ξKEμηE → ΩΧΚeTS → vsUΥwu → p40АχΑ → АσAπ82 → ψλεLG4 → τΤΗhW8 → μmOβΓG → ΥΒFλnW → ΥnDνΒW → ΩnDνΒS → ΩvDνtS → Ωv1ωtS → ψv1ωt4 → ψτ1ω74 → ψτμE74 → τνΦTE8 → μΨqxSG → Υu6τuW → ξmББΒE → νΓZΟmF → ΧfFλΚU → ΥrTΦxW → rn5υΒy → πE6τνC → ξδΧSNE → ΩΕsvkS → vK2ψηu → φΛ0Аe6 → АπVΤB2 → ψεmΒM4 → τΗEμi8 → μΧNγTG → ΥΔrwlW → nI4φιΓ → ςΟEμaA → θΧdΛTK → ΜsWΣwe → lX3χΣΕ → τkIθΕ8 → μΞJηbG → ΥΜbΝdW → nbXΡΞΓ → jcEμΝΗ → ΧaMδΟU → ΖrdΛxk → XL5υζΤ → πΙkΔgC → δSIθΨO → ΞΔtulc → bI0АιΟ → АΟcΜa2 → ψeYΠΛ4 → τhVΤΘ8 → μnPαΒG → ΥzDνpW → Ωn9ρΒS → θvDνtK → ΩΜ1ωdS → ψvXΡt4 → τj1ωΖ8 → ψμLεF4 → τΦΗhU8 → μqOβyG → ΥΒ7σnW → μnDνΒG → ΩΥDνVS → ΩvnΑtS → vD1ωξu → ψα0АQ4 → Аτxq72 → ψν6τE4 → τξΧSD8 → μαsvQG → Υy2ψqW → φn7σΒ6 → πμDνFC → δΩΥURO → Δwozsm → HB3χπλ → τεΡXM8 → μΗiΖiG → ΥOMδγW → ΖΓmΒmk → LGEμλη → ΧΤΙfWU → rmSΧΓy → tG6τλw → ξΤ2ψWE → φΩlΓR6 → πwGκsC → δΣ3χXO → τΔjΕl8 → μLHιζG → ΥΠΘgZW → ngQΩΙΓ → xSEμΨs → Χu4φuU → ςqББxA → ρyhΗqB → ζP7σβM → μΘzohG → ΥQAπαW → ζymΒqM → ΘF7σμi → μΦOβUG → ΥΒpynW → nE8ςνΓ → κΨEμSI → ΧΠtuZU → rg0АΙy → АS6τΨ2 → ψξtuD4 → τα0АQ8 → АμxqF2 → ψΦ6τU4 → τξpyD8 → μα8ςQG → κΥxqVI → Πo6τΑa → ξfBοΚE → δΩTΦRO → Δwqxsm ⮌ |