Base 18: Cycles Sequences: Maximum Length Cycle Count

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCDEF
GHIJKLMNOPQRSTUV

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Max Cycle
Length
Longest Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles--
21 cycle 9 nodes0H → G1 → E3 → A7 → 2F → C5 → 6B → 4D → 89
31 cycle (fixed) 1 node 8H9
42 cycles3 nodesA1F8 → E1F4 → E974
52 cycles2 nodes97H99 → 9HHH8
65 cycles12 nodes820GFA → GD1F42 → FD8843 → C8HH86 → B93D87 → A40GD8 → G91F82 → FD0G43 → GC8852 → E6HHA4 → DB3D65 → A84C98
71 cycle 4 nodesD82HE95 → F94HC83 → EB3HD64 → EA6HA74
86 cycles32 nodes8632EEBA → CB51FC66 → E764CBA4 → A852EC98 → C720GFA6 → GD62EB42 → EC94C854 → A870GA98 → G320GFE2 → GEDA6432 → EB93D864 → B950GC87 → G740GDA2 → GE92E832 → ECB0G654 → GA74CA72 → E832EE94 → CBA0G766 → G652ECB2 → EC74CA54 → A872EA98 → C320GFE6 → GDB5B642 → E964CB84 → A850GC98 → G720GFA2 → GED2E432 → ECB88654 → A74HHCA8 → DA3HHD75 → EC62EB54 → CA74CA76
94 cycles14 nodesC842HED96 → FA73HDA73 → EC62HEB54 → FA95HB873 → EA41HFD74 → GBA5HB762 → FB53HDC63 → EC85HB954 → D972HEA85 → F961HFB83 → GC92HE852 → FE93HD833 → ECB4HC654 → DA75HBA75
109 cycles8 nodesA7320GFEA8 → GDB31FE642 → FDB94C8643 → C9850GC986 → G7610GGBA2 → GFE52EC322 → EDCB6A6544 → A9753DCA88
114 cycles14 nodesEC851HFC954 → GB973HDA862 → FD741HFDA43 → GCB95HB8652 → FB752HECA63 → FC963HDB853 → EC862HEB954 → FA962HEB873 → FC841HFD953 → GCB83HD9652 → FD862HEB943 → FCA72HEA753 → FC952HEC853 → FC973HDA853
1219 cycles63 nodesA7510HHGGCA8 → HGB93HHD8611 → GGEA51FC7312 → FFDB72EA6423 → DDB952EC8645 → C98750GCA986 → G76310GGEBA2 → GFEB52EC6322 → EDCB74CA6544 → A98752ECA988 → C73210GGFEA6 → GFDB62EB6422 → EDC954CC8544 → A98770GAA988 → G33210GGFEE2 → GFEDBA664322 → EDB953DC8644 → B99750GCA887 → G74310GGEDA2 → GFEB92E86322 → EDCB50GC6544 → GA9774CAA872 → E83330GEEE94 → GBBBA0G76662 → GE5552ECCC32 → ECB776AAA654 → A75432EEDCA8 → CB9731FEA866 → EB6530GECB64 → GBA754CCA762 → E87532EECA94 → CBA730GEA766 → GB6532EECB62 → ECB754CCA654 → A87752ECAA98 → C73320GFEEA6 → GDBB62EB6642 → EC9554CCC854 → A87770GAAA98 → G33320GFEEE2 → GEDBBA666432 → EB9553DCC864 → B97750GCAA87 → G74330GEEDA2 → GEBB92E86632 → ECB550GCC654 → GA7774CAAA72 → E83332EEEE94 → CBBBA0G76666 → G65552ECCCB2 → EC7774CAAA54 → A87332EEEA98 → CBB320GFE666 → GDB654CCB642 → E98754CCA984 → A87310GGEA98 → GFB320GFE622 → GEDDB4C64432 → EB9984C98864 → A85110GGGC98 → GFF720GFA222 → GEDDD2E44432 → ECB998888654
133 cycles6 nodesFC9641HFDB853 → GCB862HEB9652 → FE9652HECB833 → FCB962HEB8653 → FC9652HECB853 → FC9762HEBA853
1448 cycles8 nodesA732110GGGFEA8 → GFFDB31FE64222 → FDDDB94C864443 → C999850GC98886 → G761110GGGGBA2 → GFFFE52EC32222 → EDDDCB6A654444 → A999753DCA8888
156 cycles8 nodesFCB9531HFEC8653 → GCC9762HEBA8552 → FE97641HFDBA833 → GCCA741HFDA7552 → GEB8752HECA9632 → FEB9641HFDB8633 → GCCA752HECA7552 → FE97752HECAA833
16104 cycles8 nodesA7321110GGGGFEA8 → GFFFDB31FE642222 → FDDDDB94C8644443 → C9999850GC988886 → G7611110GGGGGBA2 → GFFFFE52EC322222 → EDDDDCB6A6544444 → A9999753DCA88888
175 cycles8 nodesFE977641HFDBAA833 → GCCA7431HFEDA7552 → GECA8752HECA97532 → FEB97531HFECA8633 → GCCB9641HFDB86552 → GEB87652HECBA9632 → FEB96541HFDCB8633 → GCCA8652HECB97552
18242 cycles8 nodesA73211110GGGGGFEA8 → GFFFFDB31FE6422222 → FDDDDDB94C86444443 → C99999850GC9888886 → G76111110GGGGGGBA2 → GFFFFFE52EC3222222 → EDDDDDCB6A65444444 → A99999753DCA888888
194 cycles4 nodesGGDC97410HGGDA85412 → HFFEC9851HFC9853221 → GGDDC9740HGDA854412 → HFEC99851HFC9885321