Base 14: Cycles Sequences: Maximum Length Cycle Count

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCD

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Max Cycle
Length
Longest Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles--
23 cycles4 nodes0D → C1 → A3 → 67
31 cycle (fixed) 1 node 6D7
41 cycle 3 nodes61B8 → A1B4 → A574
52 cycles4 nodes93D95 → A3D94 → A5D74 → 94D85
64 cycles12 nodes530CA9 → C73962 → A60C74 → C60C72 → CA0C32 → CA6632 → A6DD64 → 973965 → 640C98 → C51B82 → B92A43 → 974865
71 cycle 8 nodesA62DA74 → B63D973 → A82DA54 → B64D873 → A71DB64 → C73D962 → B92DA43 → B85D753
84 cycles8 nodes7550C887 → C32DDAA2 → BB8DD423 → BA72A633 → 9770C665 → C410CC92 → CBA48322 → A9739644
93 cycles8 nodesA731DBA64 → C863D9752 → B941DB943 → C874D8652 → B831DBA53 → C884D8552 → B832DAA53 → B874D8653
106 cycles6 nodesA8110CCC54 → CBB62A7222 → A9980C5444 → C6552A8872 → A8330CAA54 → C7762A7662
113 cycles10 nodesA8730DCA654 → D9651DB8741 → CC741DB9612 → CBA72DA6322 → BA973D96433 → A8752DA8654 → B6531DBA873 → C8851DB8552 → CA632DAA732 → BA773D96633
1214 cycles12 nodesA74110CCC964 → CBB650C87222 → CA9930CA4432 → CA7754886632 → A74310CCA964 → CB7650C87622 → CA9310CCA432 → CBA774866322 → A97410CC9644 → CB6550C88722 → CA9330CAA432 → CA7774866632
133 cycles17 nodesB96320DCBA743 → DA8862DA75531 → CB7531DBA8622 → CA9851DB85432 → CA8642DA97532 → BA7641DB97633 → C88630DCA7552 → DA9531DBA8431 → CC8763D976512 → CA9420DCB9432 → DAA864D875331 → CA7631DBA7632 → CA8740DC96532 → DA9641DB97431 → CC8652DA87512 → CAA531DBA8332 → CA8774D866532
1424 cycles12 nodesA743110CCCA964 → CBB7650C876222 → CA99310CCA4432 → CBA77548866322 → A974310CCA9644 → CB76550C887622 → CA93310CCAA432 → CBA77748666322 → A974110CCC9644 → CBB6550C887222 → CA99330CAA4432 → CA777548866632
153 cycles13 nodesBA96310DCCA7433 → DB98762DA765421 → CB96420DCB97422 → DAA9752DA864331 → CB77641DB976622 → CA97310DCCA6432 → DBA9762DA764321 → CB97630DCA76422 → DAA8630DCA75331 → DC97751DB866411 → CCB7420DCB96212 → DBAA972DA643321 → CB97762DA766422
1642 cycles12 nodesA7411110CCCCC964 → CBBBB650C8722222 → CA999930CA444432 → CA77555488886632 → A7433310CCAAA964 → CB777650C8766622 → CA931110CCCCA432 → CBBBA77486632222 → A9997410CC964444 → CB655550C8888722 → CA933330CAAAA432 → CA77777486666632
171 cycle 32 nodesBA965310DCCA87433 → DB987641DB9765421 → CC975420DCB986412 → DBAA7541DB9863321 → CC987641DB9765412 → CBA75420DCB986322 → DAA98641DB9754331 → CC876541DB9876512 → CBA74320DCBA96322 → DAA98762DA7654331 → CB776420DCB976622 → DAA97310DCCA64331 → DCB97762DA7664211 → CCA96310DCCA74312 → DBBA9762DA7643221 → CB997630DCA764422 → DAA86530DCA875331 → DC977531DBA866411 → CCB86420DCB975212 → DBAA9741DB9643321 → CC987652DA8765412 → CAA64320DCBA97332 → DAA87762DA7665331 → CB775210DCCB86622 → DBAA9620DCB743321 → DCA98762DA7654311 → CCA76420DCB976312 → DBAA8630DCA753321 → DCA87751DB8665311 → CCB85320DCBA85212 → DBAA9852DA8543321 → CB977642DA9766422
1875 cycles12 nodesA74111110CCCCCC964 → CBBBBB650C87222222 → CA9999930CA4444432 → CA7755554888886632 → A74333310CCAAAA964 → CB7777650C87666622 → CA9311110CCCCCA432 → CBBBBA774866322222 → A99997410CC9644444 → CB6555550C88888722 → CA9333330CAAAAA432 → CA7777774866666632
194 cycles25 nodesCAA643210DCCBA97332 → DBAA87762DA76653321 → CB9775210DCCB866422 → DBAA97420DCB9643321 → DCA987652DA87654311 → CCA764320DCBA976312 → DBAA87630DCA7653321 → DCA877520DCB8665311 → DCBA85320DCBA853211 → DCBA98752DA86543211 → CCA976431DBA9764312 → CBA876530DCA8765322 → DAA875320DCBA865331 → DCA877531DBA8665311 → CCB875320DCBA865212 → DBAA98531DBA8543321 → CC9877642DA97665412 → CAA654210DCCB987332 → DBAA87641DB97653321 → CC9876420DCB9765412 → DBAA75420DCB9863321 → DCA987641DB97654311 → CCB865420DCB9875212 → DBAA97431DBA9643321 → CC9877652DA87665412
20127 cycles12 nodesA741111110CCCCCCC964 → CBBBBBB650C872222222 → CA99999930CA44444432 → CA775555548888886632 → A743333310CCAAAAA964 → CB77777650C876666622 → CA93111110CCCCCCA432 → CBBBBBA7748663222222 → A999997410CC96444444 → CB65555550C888888722 → CA93333330CAAAAAA432 → CA777777748666666632
213 cycles24 nodesCAA6432110DCCCBA97332 → DBBAA87762DA766533221 → CB99775210DCCB8664422 → DBAA975420DCB98643321 → DCA9876541DB987654311 → CCB8654320DCBA9875212 → DBAA986431DBA97543321 → CC98776541DB987665412 → CBA7543210DCCBA986322 → DBAA987641DB976543321 → CC98765420DCB98765412 → DBAA754320DCBA9863321 → DCA9877641DB976654311 → CCB8654210DCCB9875212 → DBBAA97431DBA96433221 → CC99877652DA876654412 → CAA6543210DCCBA987332 → DBAA877641DB976653321 → CC98764210DCCB9765412 → DBBAA75420DCB98633221 → DCA9987641DB976544311 → CCB8655420DCB98875212 → DBAA974331DBAA9643321 → CC98777652DA876665412
22211 cycles12 nodesA7411111110CCCCCCCC964 → CBBBBBBB650C8722222222 → CA999999930CA444444432 → CA77555555488888886632 → A7433333310CCAAAAAA964 → CB777777650C8766666622 → CA931111110CCCCCCCA432 → CBBBBBBA77486632222222 → A9999997410CC964444444 → CB655555550C8888888722 → CA933333330CAAAAAAA432 → CA77777777486666666632
234 cycles14 nodesCBA97543210DCCBA9864322 → DBAA9876541DB9876543321 → CC987654320DCBA98765412 → DBAA8654320DCBA98753321 → DCA98776431DBA976654311 → CCB87654210DCCB98765212 → DBBAA974320DCBA96433221 → DCA99877652DA8766544311 → CCA76543210DCCBA9876312 → DBBAA876420DCB976533221 → DCA99876420DCB976544311 → DCBA8655420DCB988753211 → DCBA9864331DBAA97543211 → CCB98776541DB9876654212
24353 cycles12 nodesA74111111110CCCCCCCCC964 → CBBBBBBBB650C87222222222 → CA9999999930CA4444444432 → CA7755555554888888886632 → A74333333310CCAAAAAAA964 → CB7777777650C87666666622 → CA9311111110CCCCCCCCA432 → CBBBBBBBA774866322222222 → A99999997410CC9644444444 → CB6555555550C88888888722 → CA9333333330CAAAAAAAA432 → CA7777777774866666666632
253 cycles11 nodesCBA755432110DCCCBA9886322 → DBBAA9876431DBA9765433221 → CC9987765420DCB9876654412 → DBAA75543210DCCBA98863321 → DCBA98776431DBA9766543211 → CCB987654210DCCB987654212 → DBBAA9754320DCBA986433221 → DCA998776541DB98766544311 → CCB865543210DCCBA98875212 → DBBAA9864331DBAA975433221 → CC9987776541DB98766654412
26557 cycles12 nodesA743333333110CCCAAAAAAA964 → CBB7777777650C876666666222 → CA99311111110CCCCCCCCA4432 → CBBBBBBBA77548866322222222 → A999999974310CCA9644444444 → CB76555555550C888888887622 → CA93333333310CCAAAAAAAA432 → CBA77777777748666666666322 → A974111111110CCCCCCCCC9644 → CBBBBBBBB6550C887222222222 → CA99999999330CAA4444444432 → CA777555555548888888866632