Base 119: Cycles Sequences: Maximum Length Cycle Count

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCDEF
GHIJKLMNOPQRSTUV
WXYZabcdefghijkl
mnopqrstuvwxyzΑΒ
ΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣ
ΤΥΦΧΨΩαβγδεζηθικ
λμνξοπρςστυφχψωА
БВГДЕЖЗИЙКЛМНОПР

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Max Cycle
Length
Longest Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles--
23 cycles4 nodes7А → ςF → βV → tΒ
31 cycle 2 nodeswЗy → xЗx
481 cycles24 nodesN8ψλ → πΛjI → ΧQζa → ΔkΚs → PAφι → μΗnM → ΞIξi → ΥUβc → vgΞΑ → X4Вα → ψqΔA → ξCτK → θΡdQ → ΖcΣq → fEςΡ → δaΥU → xiΜy → T0Жε → Жyv2 → Д2Д4 → Вω76 → φρFC → καVO → ΚsΒm
51 cycle 4 nodesΣcЗΣe → ΤcЗΣd → ΤeЗΠd → ΣdЗΡe
69 cycles80 nodesN91Еψλ → ДοΛjI4 → АΦQζa8 → ςΔjΛrG → βRBυζW → κΓsΒsO → ΚA8ψχm → πνMκKI → ΧΡΛjea → lcQζΤΛ → ΔgOθΟs → ΘYAφΨo → μoIξΗM → ΥΞHοhc → ΧhVαΞa → tlVαΚΓ → tO8ψιΓ → πΙ8ψmI → πΧLλZI → ΧΞlΙha → lWMκαΛ → ΜsOθΓk → ΘR9χζo → ξΓIξsK → ΥΣ9χdc → ξhdΡΞK → ΣdVαΣe → tecΣΡΓ → fc8ψΤΡ → πgaΥΟI → ΧjXΨΜa → plRεΚΗ → ΒOGπιu → ΩΙ6АmY → τpLλΖE → ζΞFρhS → βΒVαtW → us7ωΓΒ → ςA6АχG → τναVKE → ζΡsΒeS → Βc8ψΤu → πg6АΟI → τΧXΨZE → ζplΙΖS → ΒNFρκu → βΛ6АkW → τtPηΒE → ζΖ7ωpS → ςΒFρtG → γα7ωWV → ςvrΓzG → βB3ГφW → АλsΒM8 → ςΝ8ψiG → πβTγVI → ΧxtΑxa → l6ЗЗАΛ → БΚcΣl7 → τfNιΠE → ζΚZΦlS → ΒlNιΚu → ΚO6Аιm → τΙMκmE → ζΜLλjS → ΞΒRεti → ΒV7ωβu → ςu6АΑG → τβ5БVE → φζtΑRC → κΓ6АsO → τΚ9χlE → ξζNιRK → ΣΚΒsle → dO8ψιΤ → πΙeΠmI → ΧbLλΥa → ΞlhΝΚi → WUNιγβ → ΚwsΒym