Base 124: Maximum Iteration Sequences: Full Cycle

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCDEF
GHIJKLMNOPQRSTUV
WXYZabcdefghijkl
mnopqrstuvwxyzΑΒ
ΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣ
ΤΥΦΧΨΩαβγδεζηθικ
λμνξοπρςστυφχψωА
БВГДЕЖЗИЙКЛМНОПР

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits Max Steps Max Step Example
Full Cycle
12 max steps100
252 max steps20 → 1Л → Й3Е7χFηVЗ5БBοNΟlΕvυHγZαbΙrεXρLΤhΡjωDλRΗtνPΛpΦfΑzЛ1Й3
364 max steps100 → 0ММ → ЛМ1 → КМ2 → ЙМ3 → ИМ4 → ЗМ5 → ЖМ6 → ЕМ7 → ДМ8 → ГМ9 → ВМA → БМB → АМC → ωМD → ψМE → χМF → φМG → υМH → τМI → σМJ → ςМK → ρМL → πМM → οМN → ξМO → νМP → μМQ → λМR → κМS → ιМT → θМU → ηМV → ζМW → εМX → δМY → γМZ → βМa → αМb → ΩМc → ΨМd → ΧМe → ΦМf → ΥМg → ΤМh → ΣМi → ΡМj → ΠМk → ΟМl → ΞМm → ΝМn → ΜМo → ΛМp → ΚМq → ΙМr → ΘМs → ΗМt → ΖМu → ΕМv → ΔМw → ΓМx → ΒМy → ΑМz → zМΑzМΑ
415 max steps400R → R3Иμ → ЕΘr8 → χFφG → θεWV → ΑvΔΑ → 7ММЕ → Е6Е8 → ωφFE → λζVS → ΗxΒuC3ИБЕξN8χΞlGηRκWΗxΒu
551 max steps1000F → F0МЛψ → МυМG1 → ЛυМG2 → КτМH3 → ЙςМJ4 → ИοМM5 → ЗλМQ6 → ЖζМV7 → ЕΩМb8 → ДΡМi9 → ГΙМqA → ВzМzB → БpМΚC → АyМΑD → ωoМΛE → ψxМΒF → χnМΜG → φwМΓH → υmМΝI → τvМΔJ → σlМΞK → ςuМΕL → ρkМΟM → πtМΖN → οjМΠO → ξsМΗP → νiМΡQ → μrМΘR → λhМΣS → κqМΙT → ιgМΤU → θpМΚV → ηfМΥW → ζoМΛX → εeМΦY → δnМΜZ → γdМΧa → βmМΝb → αcМΨc → ΩlМΞd → ΨbМΩe → αiМΡc → ΩfМΥd → ΨhМΣe → ΧeМΦf → ΧfМΥf → ΦfМΥg → ΦdМΧgΨeМΦeΧhМΣfΦdМΧg
6516 max stepsB000Sn → nSAБκΞ → ρΖPμuM → ΤΛAБpi → ρaKρβM → ΦΤoΛhg → ebLπαΨ → ΤnhΣΝi → bZOνγβ → ΝrnΜΙo → PNGυοξ → εΠΜnkY → uVNξηΗ → ΟzBАΑm → οS0ЛκO → ЛΟΕul2 → ЙT9Вι4 → ЕσΓwJ8 → χΩ5ЖcG → БηkΟVC → οzTθΑO → ΟΓ0Лxm → ЛS4Зκ2 → ЙГΕu94 → Еτ9ВI8 → χσαaJG → ηΩnΜcW → ylNξΟΓ → ΟT3Иιm → ЕΔRκw8 → χΗ6ЕtG → ωηCωVE → νλyΑRQ → ΛΘ1Кsq → ЙKEχς4 → ЕιΦeT8 → χΔfΥwG → ηe6ЕΧW → ωygΤΒE → λc2ЙΩS → ЗΗkΟt6 → БUCωθC → ονΑyPO → ΟΜ1Кom → ЙSMοκ4 → ЕΡΕuj8 → χX9ВεG → σηuΕVK → Ψz9ВΑe → σi0ЛΣK → ЛΨYγd2 → ЙsiΡΘ4 → ЕYEχδ8 → χιsΗTG → ηΔDψwW → λy6ЕΒS → ωΗ2ЙtE → ЗλCωR6 → БνΗsPC → οΜDψoO → λΟMοlS → ΡΗSιtk → ΕWCωζw → νx7ДΓQ → χΛ4ЗpG → ГηKρVA → σΦyΑfK → Ψf1КΦe → ЙieΦΣ4 → ЕgYγΥ8 → χscΨΘG → ηkEχΠW → ιyUηΒU → ΓΑ2Йzy → З40ЛИ6 → ЛДАB82 → ЙφξNG4 → ЕζΞlW8 → χxRκΓG → ηΗ4ЗtW → ГyCωΒA → σν2ЙPK → ЗΨΛod6 → БjLπΡC → οΤWεhO → ΟwaαΔm → oS6ЕκΝ → ωΖNξuE → λΟAБlS → ρΗSιtM → ΤΕCωvi → νa8ГβQ → υΛoΛpI → γMKρπa → ΦΣpΚig → eZJςγΨ → ΨrhΣΙe → iaGυβΤ → εpZβΛY → uqKρΚΗ → ΦJBАσg → οΩdΧcO → ΟlhΣΟm → aTRκιγ → ΗΔpΚwu → KC6ЕАσ → ωξΧdOE → λΞhΣmS → ΗaQλβu → ΙpBАΛs → οLFφρO → ηΥΞlgW → ydRκΨΓ → Ηj3ИΡu → ЕXBАε8 → χοuΕNG → ηΠ9ВkW → σyUηΒK → ΨΑ2Йze → Зi0ЛΣ6 → ЛБYγB2 → ЙπrΘM4 → ЕΣFφi8 → χηYγVG → ηzrΘΑW → yG0ЛφΓ → Лζ3ИW2 → ЙЕwΓ74 → Еψ5ЖE8 → БχιSFC → οθΔvUO → ΟΒ7Дym → χS2ЙκG → ЗηΕuV6 → Бz9ВΑC → σο0ЛNK → ЛΨΟkd2 → ЙjTθΡ4 → ЕΓWεx8 → χw4ЗΔG → Гη6ЕVA → ωσyΑJE → λΩ1КcS → ЙΗkΟt4 → ЕUCωθ8 → χνΑyPG → ηΜ1КoWЙyMοΒ4ЕΡ2Йj8ЗχWεF6БθvΔUCοΒ7ДyOχΟ2ЙlGЗηSιV6БΕyΑvCο91КГOЙτΞlI4ЕβRκa8χΗoΛtGηMCωπWνΣxΒiQΛZ3ИγqЕrJςΙ8χΨGυdGηεiΡXWyvXδΕΓu93ИГΗЕτBАI8χοαaNGηΠnΜkWyVNξηΓΟz3ИΑmЕS0Лκ8ЛχΕuF2Йθ9ВU4ЕσΑyJ8χΩ1КcGЙηkΟV4ЕzTθΑ8χΓ0ЛxGЛη4ЗV2ЙГyΑ94Еτ1КI8ЙχαaF4ЕθnΜU8χΒNξyGηΟ2ЙlWЗySιΒ6БΕ2ЙvCЗο8ГN6БυΟkHCοδTθYOΟΓsΗxmSE4ЗψλГκΖtSAσΖBАuKοΨAБdOρΟiΡlMΤYSιδiΕtZβΗwqD7ДωΛχμJςQGηΨΙqdWyjHτΡΓγX3ИεaЕvpΚΕ8χK8ГςGυηΦeVIγzfΥΑaqe0ЛΧΛЛhJςΤ2ЙΨaαd4ЕoiΡΜ8χYMοδGηΡsΗjWyXDψεΓλv3ИΕSЕΗ8Гt8χυCωHGνηγYVQΛzrΘΑqKG0ЛφσЛζΧdW2ЙxhΣΓ4Еa4Зβ8ГχoΛFAσθLπUKΨΤΑyheib1КαΤЙnZβΝ4ЕqOνΚ8χΝIσnGηαOνbWΝymΝΒoQO2ЙξνЗΞΚpm6БRJςλCοΨΗsdOΟjDψΡmλXRκεSΘΖuΕutEB9ВБωσπκRMKΨΣΖtieiZBАγΤοrZβΙOΟqGυΚmεSIσκYαΖtΖucmCAБАΟρξRκOMΤΞΖtmiaRBАλγοΘpΚsOΟKEχςmιΧRκeUΗΓgΤxucC4ЗАαГξlΞOAσΞRκmKΨΗQλteΙiCωΣsνZFφγQηΛqΙpWyLHτρΓγΥ3ИgaЕqcΨΚ8χkIσΠGηαUηbWΑymΝΒΑQ2ММЙνКμLπQ3ЗΤΙqh6БbHταCογmΝZOΟrPμΙmΛSGυκqεΖJςuYΨuAБΖeρiAБΣMρΤYγhMΤsaαΘioaEχβΝιpNξΛUΟΓKρxmΦS4ЗκgГΖdΧuAσiAБΣKρΨYγdMΤsiΡΘiaYEχδγιtpΚΗUΓKCωςyνΧ3ИeQЕΛgΤp8χcKρΩGηΦkΟfWyfTθΦΓΓf3ИΦyЕf3ИΦ8ЕχeΦF8χθfΥUGηΒdΧyWyi2ЙΣΓЗZ3Иγ6ЕБqΙB8χπHτMGηγΡiZWyrXδΙΓuH3ИυΗЕδBАY8χοsΗNGηΠDψkWλyUηΒSΗΑ2ЙzuЗC0ЛА6ЛБνOB2ЙπΜnM4ЕΣNξi8χΟYγlGηsSιΘWΕyEχΒwι82ЙДUЗφΒxG6Бζ3ИWCЕοwΓN8χΠ5ЖkGБηUηVCοΑyΑzOΟ20ЛКmЛИRκ42ЙДΖt84ЕφBАG8χοεWNGηΠvΔkWyV7ДηΓχz3ИΑGЕη0ЛV8ЛχyΑF2Йθ1КU4ЙЕΑy74Еψ1КE8ЙχιSF4ЕθΔvU8χΒ7ДyGχη2ЙVGЗηyΑV6Бz1КΑCЙο0ЛN4ЛЕΟk72ЙψTθE4ЕκΒxS8χΖ3ИuGЕηAБV8χρyΑLGηΥ1КgWЙycΨΒ4Еk2ЙΠ8ЗχUηF6БθzzUCοΑММyOξΒbΩyPΝm2ЙΞoЗRNξλ6БΟΗslCοTDψιOλΟΓwlSΗT5ЖιuБΔBАwCπξ6ЕONωΡΝmjEλXPμεSΛΗuΕtqKD9ВωσσμΧdQKΨΚhΣqeiaIσβΤαpZβΛcqmKρΞΛΦRJςλgΨΘdΧsejhEχΤΣιbXδαUΓumΝΖyQB3ИБνЕπΚpM8χΣJςiGηΨYγdWysiΡΘΓYF3ИχεЕθtΖU8χΒBАyGοη2ЙVOЗΟyΑl6БT1КιCЙοΓwN4ЕΠ5Жk8БχUηFCοθzzUOΟΑММymΞΒDψynλQ2ЙμSЗΚΖtq6БJBАσCπξΨcONΡΞjΠmkXVQληζΙzvΔΑsG80ЛДχЛφζVG2ЙζxΒW4Еx3ИΓ8Еχ4ЗF8ГχηUFAσθzzUKΨΑММyeΧΒLπyfΤg2ЙΥiЗdZβΨ6БqiΡΚCοYIσδOαΟsΗlcmTDψιΟλΔRκwSΘΖ6ЕutωEAБψEρλιSRMΤΘΔvsiaF7ДχγχθpΚUGηΒJςyWΨy2ЙΒeЗi2ЙΣ6ЗБYγB6БπrΘMCοΣFφiOηΟYγlWysSιΘΓΕF3ИχwЕθ7ДU8ψφΑyGFιζ1КWUЙΓwΓx4Е64ЗЖ8ГАφFCAσξζVOKΨΞxΒmeiR3ИλΤЕΘZβs8χqEχΚGιηIσVUαΓyΑxcm51КЗΟЙВRκA4ЕςΖtK8χΧBАeGοηgΤVOΟzbΩΑmmS0ЛκΟЛΖRκu2ЙΗAБt4ЕρCωL8χνΤgPGηΜbΩoWymMοΞΓΡR3ИλkЕΘVζs8χyEχΒGιη2ЙVUЗΓyΑx6Б51КЗCЙВξNA4ЕςΞlK8χΧRκeGηΗgΤtWycCωΩΓνl3ИΟQЕΛSιp8χΕKρvGηΦ8ГfWυyeΦΒIγg2ЙΥaЗqcΨΚ6БkIσΠCοαUηbOΟΑmΝzmSQ0ЛμλЛΚΖtq2ЙJBАσ4ЕοΨcN8χΠjΠkGηWUηζWΑywΓΒΑ62ММЙЗКЖ1К63ЙЗωC54ЕВμPA8χςΚpKGηΧJςeWΨygΤΒeic2ЙΩΤЗlZβΟ6БqSιΚCοΕIσvOαΟ8ГlcυmSιΞIγΕQλvaΙq8ГΚsυJFφσIηγΨcZWyrjΠΙΓWH3ИυηЕδxΒY8χt3ИΗGЕηCωV8χνyΑPGηΜ1КoW