| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | Max Steps | Max Step Example Cycle Start |
|---|---|---|
| 1 | 1 max steps | 1 → 0 |
| 2 | 2 max steps | 20 → 1ρ → ο3 |
| 3 | 53 max steps | 100 → 0ςς → ρς1 → πς2 → ος3 → ξς4 → νς5 → μς6 → λς7 → κς8 → ις9 → θςA → ηςB → ζςC → εςD → δςE → γςF → βςG → αςH → ΩςI → ΨςJ → ΧςK → ΦςL → ΥςM → ΤςN → ΣςO → ΡςP → ΠςQ → ΟςR → ΞςS → ΝςT → ΜςU → ΛςV → ΚςW → ΙςX → ΘςY → ΗςZ → Ζςa → Εςb → Δςc → Γςd → Βςe → Αςf → zςg → yςh → xςi → wςj → vςk → uςl → tςm → sςn → rςo → qςp → pςq |
| 4 | 13 max steps | 4009 → 93ξκ → λΩH8 → γΖZG → ΛVΚW → fcΓΒ → QLΥΡ → yppi → Fςςγ → γEγG → ΝΚVU → idΒy → OFβΤ → ΛtlW |
| 5 | 41 max steps | p0000 → oςςςr → rnςrp → s1ςπo → ρoςq2 → πpςp3 → οnςr4 → ξoςq5 → νmςs6 → μnςr7 → λlςt8 → κmςs9 → ιkςuA → θlςtB → ηjςvC → ζkςuD → εiςwE → δjςvF → γhςxG → βiςwH → αgςyI → ΩhςxJ → ΨfςzK → ΧgςyL → ΦeςΑM → ΥfςzN → ΤdςΒO → ΣeςΑP → ΡcςΓQ → ΠdςΒR → ΟbςΔS → ΞcςΓT → ΝaςΕU → ΜbςΔV → ΛZςΖW → ΚaςΕX → ΙYςΗY → ΘZςΖZ → ΗXςΘa → ΙWςΙY → ΚZςΖX → ΙZςΖY |
| 6 | 221 max steps | B000XΞ → ΞXAηΙT → ΦkaΕvM → yUAηΜi → ΦhFβyM → ΛyGαhW → ΙeGαΒY → ΙaMΤΖY → waUΛΖk → gVBζΛΑ → ΤfJΧΑO → ΓuKΦle → ΑO8ιΣg → αtJΧmI → ΗΓ6λda → εWOΡΚE → ΟscΓnS → mQ4νΠu → ιp7κqA → γΨ0ρJG → ρΛΓcV2 → οfPΠΑ4 → λqKΦp8 → γΑ0ρfG → ρΛKΦV2 → οΑeΑf4 → λMKΦΥ8 → γΑwifG → ΛLDδΦW → ΟzdΒgS → mOIΨΣu → Εt7κmc → γS6λΞG → εΛkuVE → Οf9θΑS → ΨmKΦtK → ΓΑ6λfe → εOKΦΣE → ΟΑsmfS → mL5μΦu → ηz7κgC → γΤIΨNG → ΛΕukbW → eT9θΝΓ → ΨjNΣwK → ΓuCεle → ΡO8ιΣQ → αtppmI → Η6ςςλa → μΖRΞa7 → εmUΛtE → Οg6λzS → εmIΨtE → ΟΕ6λbS → εmSΝtE → Οk6λvS → εmAηtE → ΦΟ6λRM → εymshE → ΟH5μαS → ηΘltYC → ΤZ7κΗO → γuWΙlG → Λc8ιΔW → αeQΟΒI → ΗoMΤra → wW2οΚk → νdBζΓ6 → ηΤOΡNC → ΤvrnkO → uB3ξηm → λΥ7κM8 → δβwiGF → ΝΚDδWU → ΟicΓxS → mQEγΠu → Νp7κqU → γi0ρxG → ρΛEγV2 → οΝeΑT4 → λjLΥw8 → γyCεhG → ΡΛGαVQ → ΙqeΑpY → aM0ρΥΗ → ρxVΚi2 → οeEγΒ4 → λΝMΤT8 → γwiwjG → ΛECεδW → ΡΞdΒSQ → qlNΣuq → u8ςςιm → κtbΔm9 → αS6λΞI → εΗkuZE → ΟX9θΙS → ΨmaΕtK → ΓU6λΜe → εhNΣyE → ΟuGαlS → Ιm8ιtY → αa6λΖI → εΗUΛZE → ΟgWΙzS → mcIΨΔu → ΕR7κΟc → γnRΞsG → Λm4νtW → ιe6λΒA → εΨMΤJE → ΟΔvjcS → mRBζΟu → Τn7κsO → γu4νlG → ιΛ8ιVA → αΨeΑJI → ΗΔLΥca → yWQΟΚi → odFβΓs → ΛP3ξΡW → λrdΒo8 → γO2οΣG → νΛsmV6 → ηf5μΑC → ηΤKΦNC → ΤΑukfO → uL9θΦm → Ψz7κgK → γΓIΨdG → ΛΕOΡbW → seSΝΒo → kN3ξΤw → λvBζk8 → γΤAηNG → ΦΛukVM → yf9θΑi → ΨLFβΦK → ΛΓygdW → ePHΩΡΓ → ΗrNΣoa → uW2οΚm → νd7κΓ6 → ηγOΡFC → ΤΜrnUO → uh3ξym → λH7κα8 → δβΗYGF → ΝΚXΘWU → idZΖΓy → WPFβΡΛ → ΛrdΒoW → eO2οΣΓ → νtNΣm6 → ηu6λlC → εΤ8ιNE → αΟukRI → Ηn9θsa → ΨW4νΚK → ιΓcΓdA → ΨQOΡΠK → Γsoqne → O51πνΤ → οθtlA4 → λΧ7κK8 → δβΑeGF → ΝΚLΥWU → yicΓxi → QGEγβΡ → ΝΚppWU → icςςΓy → Δx3ξid → λQEγΠ8 → γΝoqTG → Λj1πwW → οeCεΒ4 → λΡMΤP8 → γwqojG → ΛD1πεW → οΠdΒQ4 → λpNΣq8 → γu0ρlG → ρΛ8ιV2 → οαeΑH4 → λΘLΥY8 → γyYΗhG → ΛYGαΘW → ΙeYΗΒY → aYMΤΘΗ → wZVΚΗk → eXBζΙΓ → ΤbNΣΕO → vtSΝml → kA6λθw → εΧBζKE → ΤΟΑeRO → unLΥsm → y84νκi → ιβFβGA → ΨΛΙWVK → ΓfbΔΑe → SOKΦΣΟ → Αtltmg → K86λκΨ → εβΒdGE → ΟΚNΣWS → umcΓtm → Q86λκΡ → εβppGE → ΟΙςςWS → ΞΚ5μWT → ηkcΓvC → ΤQAηΠO → ΦuoqlM → y91πιi → οΩFβI4 → λΛΕaV8 → γfTΜΑG → ΛiKΦxW → ΑeEγΒg → ΝNJΧΤU → Γvhxke |