| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | Max Steps | Max Step Example Cycle Start |
|---|---|---|
| 1 | 1 max steps | 1 → 0 |
| 2 | 3 max steps | 10 → 0σ → ς1 → π3 |
| 3 | 53 max steps | 100 → 0σσ → ςσ1 → ρσ2 → πσ3 → οσ4 → ξσ5 → νσ6 → μσ7 → λσ8 → κσ9 → ισA → θσB → ησC → ζσD → εσE → δσF → γσG → βσH → ασI → ΩσJ → ΨσK → ΧσL → ΦσM → ΥσN → ΤσO → ΣσP → ΡσQ → ΠσR → ΟσS → ΞσT → ΝσU → ΜσV → ΛσW → ΚσX → ΙσY → ΘσZ → Ησa → Ζσb → Εσc → Δσd → Γσe → Βσf → Ασg → zσh → yσi → xσj → wσk → vσl → uσm → tσn → sσo → rσp → qσq |
| 4 | 4 max steps | r000 → qσσq → qpqr → 1σσς → ς0ς2 |
| 5 | 43 max steps | 30000 → 2σσσρ → ρ1σρ3 → ςνσ52 → ρμσ63 → πκσ84 → οησB5 → ξγσF6 → νΧσK7 → μΠσQ8 → λΙσX9 → κΑσfA → ιrσoB → θhσyC → ηnσsD → ζgσzE → εmσtF → δfσΑG → γlσuH → βeσΒI → αkσvJ → ΩdσΓK → ΨjσwL → ΧcσΔM → ΦiσxN → ΥbσΕO → ΤhσyP → ΣaσΖQ → ΡgσzR → ΠZσΗS → ΟfσΑT → ΞYσΘU → ΝeσΒV → ΜXσΙW → ΛdσΓX → ΚWσΚY → ΛaσΖX → ΚZσΗY → ΙZσΗZ → ΘYσΘa → ΙWσΚZ → ΛZσΗX → ΚaσΖY → ΙYσΘZ |
| 6 | 180 max steps | N000Vl → lVMΥΜw → xgAθΑk → ΧKCζΨM → ΣΓyheQ → rOGβΤq → Κu0ςmY → ςb7λΖ2 → πδTΝF4 → μΝixU8 → δiEδyG → ΞΜFγVU → ΜjfΑxW → fLDεΧΓ → ΠΑMΥgS → xnJΨtk → ΔD5νζe → θΡOΣQC → ΥtpqnO → v60ςνm → ςη8κC2 → πβΣOH4 → μΙsnY8 → δa4ξΗG → κΜVΛVA → ΩgeΒΑK → ΔNJΨΥe → ΔwOΣke → tPBηΣo → Υs4ξoO → κv3οlA → μΩ9ιJ8 → δΩΔcJG → ΜΕQΠcW → pfRΟΒs → nM2πΦu → ξy6μi6 → θζFγDC → ΥΡΛVQO → vqeΒqm → N8σσκΦ → λΥCζN9 → βΣvkPI → ΘsAθoa → ΧX3οΚM → μzbΕh8 → δTHαΞG → ΜΘjwZW → fYCζΙΓ → ΣaMΥΗQ → xrVΛpk → fD1ρζΓ → πΡMΥQ4 → μxpqj8 → δE0ςεG → ςΟΛVS2 → πmeΒu4 → μN7λΥ8 → εγvkGF → ΞΛAθWU → ΧjdΓxM → zPDεΣi → ΠsGβoS → Κn3οtY → μb5νΖ8 → θδTΝFC → ΥΝixUO → viEδym → ΞG8κγU → βΛixWI → ΘeEδΓa → ΞXNΤΚU → vjbΕxm → TE8κεΟ → βΟkvSI → ΘmAθua → ΧX7λΚM → δzbΕhG → ΜTHαΞW → ΘkeΒwa → XNBηΥΛ → ΥwcΔkO → vRBηΠm → Υo8κsO → βv3οlI → μΘ9ιZ8 → δΩXΙJG → ΜΕaΖcW → fVRΟΜΓ → ngMΥΑu → xK6μΨk → ζΓCζeE → ΣΠNΤRQ → vrnspm → 951ρξλ → πιαHA4 → μΨΗZK8 → δΓWΚeG → ΜdNΤΔW → vfPΡΒm → rM8κΦq → βy0ςiI → ςΘFγZ2 → πΜXΙV4 → μgaΖΑ8 → δVJΨΜG → ΜΔfΑdW → fQKΧΡΓ → ΒqMΥqg → xKσσΧk → ΨwNΤkL → ΒvBηlg → ΥL9ιΧO → ΩΑulgK → ΔK8κΨe → βΓOΣeI → ΘtNΤna → vX5νΚm → θc8κΕC → βΥRΟNI → Θwmtka → XC6μηΛ → ζΤcΔOE → ΠuQΠmS → pn7λts → δ62πνG → ξηΛVC6 → θΤeΒOC → ΥuMΥmO → xv7λlk → δD9ιζG → ΩΡΛVQK → ΔqeΒqe → PMσσΥΤ → ΦΣ0ςPN → ςxroj2 → πE2πε4 → ξμΞS76 → θεkvEC → ΥΟAθSO → ΧvlulM → zA8κιi → βΨGβKI → ΚΘΒeZY → bYMΥΙΗ → xaUΜΗk → hWCζΛΑ → ΣeIΩΓQ → ΖrNΤpc → vT1ρΞm → πk8κw4 → μβBηH8 → δΥΘYNG → ΜwYΘkW → fZBηΘΓ → ΥYMΥΙO → xvZΗlk → XD9ιζΛ → ΩΡcΔQK → ΔqQΠqe → pOσσΣs → ΤrOΣpP → us1ρon → π73ομ4 → νλδE87 → ζγΝTGE → ΠΛixWS → neEδΓu → ΞO6μΤU → ζuixmE → ΠF7λδS → δΝmtUG → Μi6μyW → ζfFγΒE → ΠΜLΦVS → znfΑti → LH5νβΨ → θΙΑfYC → ΥaKΧΗO → ΒvVΛlg → fL9ιΧΓ |