| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р |
| С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я | а |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | Max Steps | Max Step Example Cycle Start |
|---|---|---|
| 1 | 1 max steps | 1 → 0 |
| 2 | 3 max steps | 10 → 0Х → Ф1 → Т3 |
| 3 | 67 max steps | 100 → 0ХХ → ФХ1 → УХ2 → ТХ3 → СХ4 → РХ5 → ПХ6 → ОХ7 → НХ8 → МХ9 → ЛХA → КХB → ЙХC → ИХD → ЗХE → ЖХF → ЕХG → ДХH → ГХI → ВХJ → БХK → АХL → ωХM → ψХN → χХO → φХP → υХQ → τХR → σХS → ςХT → ρХU → πХV → οХW → ξХX → νХY → μХZ → λХa → κХb → ιХc → θХd → ηХe → ζХf → εХg → δХh → γХi → βХj → αХk → ΩХl → ΨХm → ΧХn → ΦХo → ΥХp → ΤХq → ΣХr → ΡХs → ΠХt → ΟХu → ΞХv → ΝХw → ΜХx → ΛХy → ΚХz → ΙХΑ → ΘХΒ → ΗХΓ → ΖХΔ → ΕХΕ |
| 4 | 4 max steps | Ζ000 → ΕХХΕ → ΕΔΕΖ → 1ХХФ → Ф0Ф2 |
| 5 | 51 max steps | 10009 → 90ХФН → ХКХA1 → ФКХA2 → УЙХB3 → ТЗХD4 → СДХG5 → РАХK6 → ПυХP7 → ОοХV8 → НθХc9 → МΩХkA → ЛΟХtB → КΕХΔC → ЙtХΟD → ИΓХΖE → ЗsХΠF → ЖΒХΗG → ЕrХΡH → ДΑХΘI → ГqХΣJ → ВzХΙK → БpХΤL → АyХΚM → ωoХΥN → ψxХΛO → χnХΦP → φwХΜQ → υmХΧR → τvХΝS → σlХΨT → ςuХΞU → ρkХΩV → πtХΟW → οjХαX → ξsХΠY → νiХβZ → μrХΡa → λhХγb → κqХΣc → ιgХδd → θpХΤe → ηfХεf → ζoХΥg → εeХζh → ηlХΨf → ζiХβg → εkХΩh → δhХγi → δiХβi → γiХβj → γgХδj |
| 6 | 392 max steps | 10003S → S30ФТτ → ФПΟt62 → ТЙKАC4 → ОχεfO8 → ЖΨmΧmG → πaYμλW → ΘΒxΛΘΓ → D64РПЙ → МЙυPCA → ВχΤpOK → θΨSςme → ΞrZλΣw → zQGДυΛ → ξΤAКqY → АΔRσΖM → δΠ1Уti → ТjLωβ4 → Оδfεh8 → ЖnjαΧG → πfXνζW → ΘΔnΦΖΓ → X51УРο → ТЛΕΔA4 → ОБ0ФK8 → ФЖζeF2 → ТρoΥU4 → ОΛUπy8 → ЖΚBЙzG → ψπ9ЛVO → ВΩΘΑlK → θc6Оιe → ИuqΣΟE → τRJБτS → θΡΟtse → rOKАχΤ → ζΨQτmg → ΣnZλΧs → zYOφνΛ → ΧΓAКΗo → АX3СξM → ОδΔΕh8 → Жk0ФαG → ФπdηV2 → ТΙqΣΑ4 → ОR7Нτ8 → ЗЕΠsGF → ςοMψWU → βΜΖΓxk → fE2ТЗη → РσoΥS6 → КΟUπuC → ψΚJБzO → θΩ9Лle → ВrbιΣK → θvPυΞe → ΥrHГΣq → μTPυςa → ΥΝyΚwq → TGAКЕσ → АοΝvWM → δΗGДΓi → ξj3СβY → ОΔfεΖ8 → Жn1УΧG → ТπXνV4 → ОΙΓΖΑ8 → Ж82ТНG → РЕοVG6 → КοΗΒWC → ψΗ4РΓO → МΩ3СlA → ОВbιJ8 → ЖιuΞcG → πuIВΟW → κΘJБΒc → θv5ПΞe → КrHГΣC → ψμPυZO → ΩΥzΙpm → bU8Мρλ → ДΛwΜyI → μFBЙЖa → ψρyΚUO → ΩΛAКym → АbBЙκM → ψδvΝhO → ΩkGДαm → ξeaκηY → ΔxpΤΜΗ → TE2ТЗσ → РσΝvS6 → КΟGДuC → ψξJБXO → θΩΔΕle → rc0ФιΤ → ФuQτΟ2 → ТΣJБr4 → ОθPυd8 → ЖΥrΡpG → πUOφρW → ΧΛΗΒyo → XC4РЙο → МχΕΔOA → ВΨ0ФmK → ФθZλd2 → ТzrΡΚ4 → ОP9Лφ8 → ЖВΥoJG → πιUπcW → ΚΘtΟΒΑ → L95ПМБ → КГεfIC → ψλmΧaO → ΩyYμΛm → ΒbBЙκΙ → ψw6ОΝO → ИΩFЕlE → τπbιVS → ΠΙuΞΑu → LJ7НВБ → ЖιεfcG → πumΧΟW → ΘZJБμΓ → θΑ4РΙe → Мr7НΣA → ЖВPυJG → πιΤpcW → ΘuSςΟΓ → ΞK4РБw → МηGДeA → ВξpΤXK → θΕSςΕe → ΞqХХΣw → ΤΝ3Сwr → ОRFЕτ8 → ЖπΠsVG → πΙMψΑW → βΘ7НΒk → Жf5ПζG → КπnΦVC → ψΙWξΑO → ΩΖ7НΔm → Жb1УκG → ТπvΝV4 → ОΙGДΑ8 → Жξ7НXG → ЖπΔΕVG → πΙ0ФΑW → ФΘ7НΒ2 → ТЖ5ПF4 → ОКπUB8 → ЖωΙzMG → πγ8МiW → ДΘhγΒI → μj5Пβa → КzfεΚC → ψn9ЛΧO → ВΩXνlK → θΔbιΖe → vr1УΣΟ → ТQIВυ4 → ОκΣqb8 → ЖwQτΝG → πΣFЕrW → πΘPυΒW → ΥΘ5ПΒq → КT5ПςC → КψΜwNC → ψαEЖkO → ςΩdηlU → ΜrbιΣy → vQCИυΟ → φΤIВqQ → κΥRσpc → ΠvTρΞu → ΜLHГАy → μεCИga → φzlΨΚQ → Υb9Лκq → ВwSςΝK → θΞFЕve → πrHГΣW → μΘPυΒa → Υz5ПΚq → КT9ЛςC → ВψΜwNK → θαEЖke → ςrdηΣU → ΜrPυΣy → ΥQCИυq → φΤSςqQ → ΥΞRσvq → ΠTHГςu → μΝKАwa → ζzFЕΚg → πn9ЛΧW → ВΘXνΒK → θΔ5ПΖe → Кr1УΣC → ТψPυN4 → ОαΤpk8 → ЖeSςηG → πΞpΤvW → ΘTHГςΓ → μΝ4Рwa → МzFЕΚA → Вπ9ЛVK → ВθΘΑdK → θs6ОΡe → ИrNχΣE → τΩPυlS → ΥΠbιtq → vTLωςΟ → δΝIВwi → κjFЕβc → πvfεΞW → ΘnHГΧΓ → μY4Рνa → МΓyΚΗA → ВB3СКK → ОωηdM8 → ЖγqΣiG → πiQτγW → ΣΘhγΒs → jP5Пφγ → КΦgδoC → ψlVοΩO → ΩΘbιΒm → vb5ПκΟ → КwIВΝC → ψκFЕbO → πΩvΝlW → ΘcGДιΓ → ξu4РΟY → МΔJБΖA → Вθ1УdK → ТθrΡd4 → ОsOφΡ8 → ЖΧNχnG → πΩXνlW → ΘΔbιΖΓ → v51УРΟ → ТЛIВA4 → ОБιbK8 → ЖηuΞeG → πqIВΤW → κΘRσΒc → Πv5ПΞu → КLHГАC → ψμδgZO → ΩΑkΩΙm → db7Нκι → ЖwsΠΝG → πNFЕψW → παΗΒkW → Θe4РηΓ → Мq4РΤA → МВRσJA → ВιΟtcK → θuKАΟe → ζrJБΣg → θnPυΧe → ΥrXνΣq → ΔTPυςΗ → ΥΝ2Тwq → РTFЕς6 → КπΜwVC → ψΙEЖΑO → ςΩ7НlU → ЖΜbιxG → πvDЗΞW → τΘHГΒS → μΠ5Пta → КzLωΚC → ψδ9ЛhO → ВΩjαlK → θfbιζe → vrnΦΣΟ → XQIВυο → κΤΕΔqc → vS0ФσΟ → ФΟIВu2 → ТκJБb4 → ОθvΝd8 → ЖsGДΡG → πξNχXW → ΩΘΔΕΒm → b60ФПλ → ФЙwΜC2 → ТχEЖO4 → ОςΧmT8 → ЖΝYμwG → πΒFЕΘW → πΘ5ПΒW → КΘ5ПΒC → Кψ5ПNC → КψΩkNC → ψαcθkO → ΩtdηΠm → rbLωκΤ → δwQτΝi → ΣjFЕβs → πgOφεW → ΧΘlΨΒo → bX5Пξλ → КΕwΜΕC → ψEХХЖO → Зχ7НOF → ЖςΧmTG → πΝYμwW → ΘΒFЕΘΓ → π64РПW → МЙΗΒCA → Вχ4РOK → МθΧmdA → ВsYμΡK → θΒNχΘe → Ωr5ПΣm → КbPυκC → ψΥvΝpO → ΩUGДρm → ξΛaκyY → ΔxBЙΜΗ → ψE2ТЗO → РσΨlS6 → КΟaκuC → ψxJБΜO → θΩDЗle → τrbιΣS → ΠvPυΞu → ΥLHГАq → μεSςga → ΞzlΨΚw → bH9ЛДλ → ВνwΜYK → θΓEЖΗe → ςr3СΣU → ОΜPυx8 → ЖΥDЗpG → τπTρVS → ΠΜΘΑxu → LE6ОЗБ → ИσεfSE → τΟmΧuS → ΠZJБμu → θΑKАΙe → ζr7НΣg → ЖnPυΧG → πΥXνpW → ΘΔTρΖΓ → Μ51УРy → ТЛCИA4 → ОБυPK8 → ЖηΤpeG → πqSςΤW → ΞΘRσΒw → ΠH5ПДu → КνKАYC → ψζΒΗfO → Ωo4РΦm → МbVοκA → ВΘvΝΒK → θH5ПДe → КνqΣYC → ψΓQτΗO → ΩΣ3Сrm → ОbPυκ8 → ЖΥvΝpG → πUGДρW → ξΛΗΒyY → ΔC4РЙΗ → Мχ2ТOA → РВΧmJ6 → КιYμcC → ψΒtΟΘO → ΩL5ПАm → КεaκgC → ψxlΨΜO → ΩbDЗκm → τwaκΝS → ΠxFЕΜu → πLDЗАW → τεΗΒgS → Πm4РΨu → МaKАλA → ВζxΛfK → θoCИΦe → φrVοΣQ → ΥΘPυΒq → ΥT5Пςq → КΝSςwC → ψΞFЕvO |