| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р |
| С | Т | У | Ф | Х | Ц | Ч | Ш | Щ | Ъ | Ы | Ь | Э | Ю | Я | а |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | Max Steps | Max Step Example Cycle Start |
|---|---|---|
| 1 | 1 max steps | 1 → 0 |
| 2 | 4 max steps | 10 → 0У → Т1 → Р3 → М7 |
| 3 | 66 max steps | 100 → 0УУ → ТУ1 → СУ2 → РУ3 → ПУ4 → ОУ5 → НУ6 → МУ7 → ЛУ8 → КУ9 → ЙУA → ИУB → ЗУC → ЖУD → ЕУE → ДУF → ГУG → ВУH → БУI → АУJ → ωУK → ψУL → χУM → φУN → υУO → τУP → σУQ → ςУR → ρУS → πУT → οУU → ξУV → νУW → μУX → λУY → κУZ → ιУa → θУb → ηУc → ζУd → εУe → δУf → γУg → βУh → αУi → ΩУj → ΨУk → ΧУl → ΦУm → ΥУn → ΤУo → ΣУp → ΡУq → ΠУr → ΟУs → ΞУt → ΝУu → ΜУv → ΛУw → ΚУx → ΙУy → ΘУz → ΗУΑ → ΖУΒ → ΕУΓ → ΔУΔ |
| 4 | 4 max steps | Ε000 → ΔУУΔ → ΔΓΔΕ → 1УУТ → Т0Т2 |
| 5 | 49 max steps | 30000 → 2УУУС → С1УС3 → ТНУ52 → СМУ63 → РКУ84 → ПЗУB5 → ОГУF6 → НψУK7 → МςУQ8 → ЛλУX9 → КγУfA → ЙΣУoB → ИΘУyC → ЗwУΚD → ЖxУΙE → ЕvУΛF → ДwУΚG → ГuУΜH → ВvУΛI → БtУΝJ → АuУΜK → ωsУΞL → ψtУΝM → χrУΟN → φsУΞO → υqУΠP → τrУΟQ → σpУΡR → ςqУΠS → ρoУΣT → πpУΡU → οnУΤV → ξoУΣW → νmУΥX → μnУΤY → λlУΦZ → κmУΥa → ιkУΧb → θlУΦc → ηjУΨd → ζkУΧe → εiУΩf → δjУΨg → γhУαh → βiУΩi → αgУβj → γfУγh → δiУΩg → γiУΩh |
| 6 | 170 max steps | O000dυ → υdNυζP → ΧΥpΡnm → ZWQςνλ → ΠΕyΘΓs → N91СКχ → РБΨjI4 → Мιcζa8 → ДwqΠΛG → ξPDЕτW → ςΤΕΒoS → ΞU2Рοu → ОΙIАy6 → Иθ9ЙbC → АφtΝNK → ζΨIАke → θpbηΣc → usRρΟΞ → ΞMIАχu → θαIАic → θtfγΞc → tlJωΧΟ → ζaKψιe → δwoΣΛg → lTDЕπΨ → ςΛaθwS → ΞvDЕΜu → ςJFГАS → ξηΝtcW → ΖsIАΟΓ → θM2Рχc → ОαsΞi6 → ИgKψγC → φδjΨfO → ΧmcζΦm → rZXλκΡ → ΒyOτΙΗ → ΥA4ОЙo → КωUξKA → АεΗzeK → ζo6МΤe → ЖpTοΣE → ςΚRρxS → ΟΝBЗut → φLHБψO → κγΦlga → xkYκΨΛ → zcCЖηΙ → τs8КΟQ → ВΣLχpI → κβRρha → ΞxhαΚu → hJBЗАγ → φηiΩcO → ΧseδΟm → nZLχκΦ → βyWμΙi → Δh9ЙβΕ → Аi0ТαK → Тζfγd2 → РqkΧΡ4 → МbPσθ8 → ДΣtΝpG → ξSIАρW → θΝΕΒuc → tI2РБΟ → ОιKψa6 → ИδvΛfC → φmEДΦO → πΧXλlU → ΚΒZιΖy → xB3ПИΛ → МχCЖM8 → ДτΩiPG → ξΤeδoW → ΖnTοΥΓ → ΚW2Рνy → ОΕAИΓ6 → Иψ1СLC → РφβgN4 → МΨiΩk8 → ДfbηδG → ξtlΦΞW → ΖZJωκΓ → ζy2РΙe → Оp9ЙΣ6 → ИАRρJC → φηΝtcO → ΧsIАΟm → θZLχκc → βysΞΙi → hL9Йψγ → АγiΩgK → ζkeδΨe → pnbηΥΤ → tWSπνΟ → ΜΕKψΓw → δF1СДg → РοkΧU4 → МΙaθy8 → Дv9ЙΜG → АξFГVK → ξζΖΑdW → Ζq4ОΡΓ → КQ2РσA → ОАΠqJ6 → ИηOτcC → φΥrΟnO → ΧWMφνm → ΩΕYκΓk → zd1СζΙ → Рq8КΡ4 → МВPσH8 → ДλΡpYG → ξΑQςΗW → ΠΖ5НΒs → ИN3ПφC → МφΧkN8 → ДΨaθkG → ξvbηΜW → ΖtFГΞΓ → ξK2РωW → ОεΕΒe6 → Иo2РΤC → ОφTοN6 → ИΨΙxkC → φcAИηO → ψΧrΟlM → βaMφιi → ΩwgβΛk → jdDЕζα → ςqeδΡS → ΞnPσΥu → ΣWIАνq → θΕQςΓc → Πt1СΞs → РNJωφ4 → МζΧkd8 → ДqaθΡG → ξvPσΜW → ΣΖFГΒq → ξR3ПςW → МΟΕΒs8 → ДM2РχG → ОξΩiV6 → ИΗeδΑC → φn5НΥO → ИΧVνlC → φΖZιΒO → Χx3ПΚm → МZBЗκ8 → ДφxΙNG → ξΨAИkW → ψΖbηΒM → βt3ПΞi → МhJωβ8 → ДζhαdG → ξqgβΡW → ΖjPσΩΓ → Σe2Рεq → ОoQςΤ6 → ИΠTοrC → φΚNυxO → ΨΦBЗml → φbXλθO → ΧΒtΝΖm → ZJ3ПАλ → МηyΘc8 → Дs8КΟG → ВξLχVI → κβΖΑha |