| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Б | В | Г | Д | Е | Ж | З | И | Й | К | Л | М | Н | О | П | Р |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | Max Steps | Max Step Example Cycle Start |
|---|---|---|
| 1 | 1 max steps | 1 → 0 |
| 2 | 3 max steps | 10 → 0Й → И1 → Ж3 |
| 3 | 61 max steps | 100 → 0ЙЙ → ИЙ1 → ЗЙ2 → ЖЙ3 → ЕЙ4 → ДЙ5 → ГЙ6 → ВЙ7 → БЙ8 → АЙ9 → ωЙA → ψЙB → χЙC → φЙD → υЙE → τЙF → σЙG → ςЙH → ρЙI → πЙJ → οЙK → ξЙL → νЙM → μЙN → λЙO → κЙP → ιЙQ → θЙR → ηЙS → ζЙT → εЙU → δЙV → γЙW → βЙX → αЙY → ΩЙZ → ΨЙa → ΧЙb → ΦЙc → ΥЙd → ΤЙe → ΣЙf → ΡЙg → ΠЙh → ΟЙi → ΞЙj → ΝЙk → ΜЙl → ΛЙm → ΚЙn → ΙЙo → ΘЙp → ΗЙq → ΖЙr → ΕЙs → ΔЙt → ΓЙu → ΒЙv → ΑЙw → zЙx → yЙy |
| 4 | 4 max steps | z000 → yЙЙy → yxyz → 1ЙЙИ → И0И2 |
| 5 | 47 max steps | 30000 → 2ЙЙЙЗ → З1ЙЗ3 → ИГЙ52 → ЗВЙ63 → ЖАЙ84 → ЕχЙB5 → ДσЙF6 → ГξЙK7 → ВθЙQ8 → БαЙX9 → АΡЙfA → ωΘЙoB → ψxЙyC → χnЙΙD → φwЙzE → υmЙΚF → τvЙΑG → σlЙΛH → ςuЙΒI → ρkЙΜJ → πtЙΓK → οjЙΝL → ξsЙΔM → νiЙΞN → μrЙΕO → λhЙΟP → κqЙΖQ → ιgЙΠR → θpЙΗS → ηfЙΡT → ζoЙΘU → εeЙΣV → δnЙΙW → γdЙΤX → βmЙΚY → αcЙΥZ → ΩlЙΛa → ΨbЙΦb → ΧkЙΜc → ΦaЙΧd → ΨhЙΟb → ΧeЙΣc → ΦgЙΠd → ΥdЙΤe → ΥeЙΣe → ΤeЙΣf → ΤcЙΥf |
| 6 | 430 max steps | Z000vx → xvYΩΒΑ → p62ЖГΙ → ДχIπC6 → ψλΦbOC → μΛiΞmO → ΜVNλδm → ΜwOκΑm → ΚP3Еκo → ВΙKξo8 → τΣJοfG → δΥbΦdW → vjfΡΞΓ → bU6ВεΨ → φykΜyE → θQЙЙθS → ιζЙЙSR → θη2ЖSS → ДΔΒut6 → ψA6ВωC → φολNKE → θΤΛleS → ΔeOκΤu → Κe8АΤo → ςeKξΤI → ΩΣdΤfa → nfbΦΣΛ → jcMμΦΟ → ΞiUδΟk → xWSζγΑ → Βu2ЖΓw → Д84ДБ6 → АψςGBA → πναXMK → ΥΟqΖie → fWEτγΤ → ζucΥΓU → zh7БΠy → τY0ИαG → ИδpΗV2 → ЖwGςΑ4 → Вβ3ЕX8 → ВτrΕF8 → τεCφUG → κδxyVQ → Θw0ИΑq → ИH3Еς2 → ЖВΩY74 → ВυoΘE8 → τηIπSG → δΧΒubW → vk6ВΝΓ → φS6ВηE → φθΒuRE → θΕ6ВsS → φΔBχtE → μθ9ωRO → πΜΔslK → ΥQAψιe → ξΗeΣqM → ΠdFσΥi → δgWβΡW → vtZΨΔΓ → nA6ВωΛ → φοMμKE → θΤΝjeS → ΔeSζΤu → Βe8АΤw → ςe4ДΤI → АΩdΤZA → πoeΣΙK → ΥdJοΥe → ΥgeΣΡe → fdZΨΥΤ → ngcΥΡΛ → haMμΨΡ → ΞmYΩΛk → pTNλζΙ → ΜΑIπwm → ΧP3Еκc → ВΙiΞo8 → τVJοδG → δΥvΑdW → vg4ДΡΓ → Аa6ВΨA → φπlΛJE → θΦOκcS → ΚΔhΟto → XL9ωξγ → πΡsΔgK → ΥaAψΨe → ξmeΣΛM → ΠdNλΥi → ΜgWβΡm → taOκΨΕ → ΚmAψΛo → ξOKξλM → ΣΠΚmhg → bYMμαΨ → ΞqkΜΗk → TRFσθη → δΕΑvsW → vC4ДχΓ → Аλ6ВOA → φπΚmJE → θΦMμcS → ΞΔhΟtk → XT9ωζγ → πΑsΔwK → ΥB3Еψe → ВνeΣM8 → τΟcΥiG → δhVγΠW → wuXαΓΒ → r84ДБΗ → АσEτGA → πζβWTK → ΥΑsΔwe → fB3ЕψΤ → ВνcΥM8 → τΟgΠiG → δZVγΩW → wunΙΓΒ → L84ДБο → АσΡfGA → πγaΧWK → ΥukΜΓe → fR7БθΤ → τΕcΥsG → δhBχΠW → μvXαΒO → Μr5ГΖm → ψPDυκC → μθΘoRO → ΜΕIπsm → ΧPBχκc → μΙiΞoO → ΜVJοδm → ΥwOκΑe → Κf3ЕΣo → ВcKξΦ8 → τΣhΟfG → δcWβΦW → vthΟΔΓ → XA6Вωγ → φοsΔKE → θΤAψeS → ξΔdΤtM → Πf9ωΣi → πcWβΦK → ΥthΟΔe → fX9ωβΤ → πscΥΕK → ΥhBχΠe → μfXαΣO → ΜrbΦΖm → jPDυκΟ → θΙUδoS → ΔxJοzu → Υ91ЗАe → ЖρeΣI4 → ВΨcΥa8 → τmgΠΛG → δZNλΩW → ΜvnΙΒm → PL5Гξλ → ψΡΙngC → μaKξΨO → ΣΜlΛlg → bQOκιΨ → ΚΗkΜqo → RLFσξι → δΡΕrgW → vaCφΨΓ → κm6ВΛQ → φΘNλpE → θΜHρlS → ΩΔPιta → Θn9ωΚq → πMGςνK → βΥΞidY → rgUδΡΗ → xaEτΨΑ → ζm2ЖΛU → ДzNλx6 → ψΜ1ЗlC → ЖμPιN4 → ВΝΗpk8 → τSGςηG → δβΒuXW → vs6ВΕΓ → φC6ВχE → φληROE → θΛΓtmS → ΔO8Аλu → ςΛ8АmI → ςΩNλZI → ΩΜnΙla → nQKξιΛ → ΣΗMμqg → ΞbFσΧk → δkSζΝW → ΒvRηΒw → Δ64ДГu → Аχ8АCA → ςπκOJI → ΩΦΙnca → niKξΟΛ → ΣWMμγg → ΞuaΧΓk → lT7БζΝ → τΑQθwG → δΖ3ЕrW → ВvDυΒ8 → τθ5ГRG → ψδΔsVC → μwAψΑO → ξΜ3ЕlM → ВΠPιh8 → τΘXαpG → δrHρΖW → ΩvDυΒa → θn5ГΚS → ψΔLνtC → μΠ9ωhO → πΜXαlK → ΥrPιΖe → ΘfDυΣq → θcGςΦS → βΔhΟtY → rX9ωβΗ → πsEτΕK → ζΥBχdU → μzfΡxO → Μb1ЗΧm → ЖkOκΝ4 → ВΚRηn8 → τΔLνtG → δΠ9ωhW → πvXαΒK → Υr5ГΖe → ψfDυΣC → μθbΦRO → ΜΕiΞsm → VPBχκε → μΙwzoO → ΜK2Жοm → ДΤOκe6 → ψΚdΤnC → μfLνΣO → ΠΜbΦli → jXPιβΟ → ΘsUδΕq → xHBχςΑ → μα2ЖYO → ДΜpΗl6 → ψQGςιC → μβΖqXO → ΜsEτΕm → ζPBχκU → μΙyxoO → ΜK0Иοm → ИΤOκe2 → ЖΚdΤn4 → ВfLνΣ8 → τΠbΦhG → δjXαΞW → vrTεΖΓ → zE6Вυy → φη0ИSE → ИθΒuR2 → ЖΕ6Вs4 → ВφBχD8 → τμθQNG → δΝΕrkW → vSCφηΓ → κΓ6ВuQ → φΘ7БpE → τθHρRG → δΩΔsZW → voAψΙΓ → ξK6ВοM → φΤΟheE → θeWβΤS → ΔtdΤΔu → fA8АωΤ → ςοcΥKI → ΩΤgΠea → neYΩΤΛ → peMμΤΙ → ΞeIπΤk → ΧeSζΤc → ΒjdΤΞw → fU4ДεΤ → АycΥyA → πgЙЙΠK → οΡNλgL → ΣΜZΨlg → nbPιΧΛ → ΘkMμΝq → ΞSGςηk → βΓSζuY → Βr7БΖw → τE4ДυG → АηγVSA → πΓuΒuK → Υ86ВБe → φσeΣGE → θγcΥWS → ΔugΠΓu → Z97БАα → τρoΘIG → δΨIπaW → ΧvlΛΒc → jP5ГκΟ → ψΙUδoC → μxJοzO → ΥΜ1Зle → ЖfPιΣ4 → ВΘbΦp8 → τjHρΞG → δΩTεZW → zvnΙΒy → L60ИГο → ИχΡfC2 → ЖλaΧO4 → ВΛkΜm8 → τRNλθG → δΜΔslW → vQAψιΓ → ξΗ6ВqM → φΠFσhE → θδXαVS → ΔwqΖΑu → F93ЕАυ → ВρεTI8 → τΨyxaG → δm0ИΛW → ИvNλΒ2 → ЖΜ5Гl4 → ВψPιB8 → τνΗpMG → δΟGςiW → βvVγΒY → vr5ГΖΓ → ψE6ВυC → φμζSNE → θΝΑvkS → ΔS4Дηu → АΓ8АuA → ςπ7БJI → τΩΥcZG → δogΠΙW → vZJοΩΓ → Υo6ВΙe → φfJοΣE → θΥbΦdS → ΔjfΡΞu → bU8АεΨ → ςykΜyI → ΩQЙЙθa → ιΨ7БaR → τΖlΛrG → δPDυκW → θΙuΒoS → ΔK6Вοu → φΤ8АeE → ςθdΤRI → ΩΕeΣsa → ndBχΥΛ → μgMμΡO → ΞΜZΨlk → nTPιζΛ → ΘΑMμwq → ΞH3Еςk → ВαSζY8 → τΒpΗvG → δH5ГςW → ψαuΒYC → μq6ВΗO → φΜFσlE → θδPιVS → ΘΔvΑtq → HA4Дωσ → АοαXKA → πΤqΖeK → ΥeEτΤe → ζfdΤΣU → zfbΦΣy → jc0ИΦΟ → ИiUδΟ2 → ЖxVγz4 → Вv1ЗΒ8 → Жτ5ГF4 → ВψδUB8 → τνwzMG → δΟ2ЖiW → ДvVγΒ6 → ψv5ГΒC → ψμ5ГNC → ψμΜkNC → μΝQθkO → ΜΖRηrm → ΔPDυκu → θΙ8АoS → ςΔJοtI → ΩΥ9ωda → πnfΡΚK → ΥbLνΧe → ΠkeΣΝi → dXRηβΦ → ΔsgΠΕu → ZC8Аχα → ςλoΘOI → ΩΛIπma → ΧnNλΚc → ΜjLνΞm → ΠUOκεi → ΚyWβyo → tKЙЙξΕ → οΔWβtL → Σt9ωΔg → πb9ωΧK → πΥjΝdK → ΥgSζΡe → ΒfZΨΣw → nc4ДΦΛ → АiMμΟA → πΞVγjK → ΥvTεΒe → zf5ГΣy |