| Radix Character Encoding | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
| W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l |
| m | n | o | p | q | r | s | t | u | v | w | x | y | z | Α | Β |
| Γ | Δ | Ε | Ζ | Η | Θ | Ι | Κ | Λ | Μ | Ν | Ξ | Ο | Π | Ρ | Σ |
| Τ | Υ | Φ | Χ | Ψ | Ω | α | β | γ | δ | ε | ζ | η | θ | ι | κ |
| λ | μ | ν | ξ | ο | π | ρ | ς | σ | τ | υ | φ | χ | ψ | ω | А |
| Color Key | ||
|---|---|---|
| Orange | Fixed Point | number that becomes itself after one iteration |
| Green | Final Numbers | all numbers eventually reached, from all cycles |
| Purple | Cycle Start | iterations include entry into cycle, assuming it repeats |
| Red | Full Cycle | iterations include entire cycle, proving it repeats |
| Blue | Start Numbers | subset (optimization) of all numbers; minimal for full coverage |
| Gray | No Results | any calculation that has no results |
| Digits | Max Steps | Max Step Example Cycle Start |
|---|---|---|
| 1 | 1 max steps | 1 → 0 |
| 2 | 4 max steps | 10 → 0υ → τ1 → ς3 → ξ7 |
| 3 | 54 max steps | 100 → 0υυ → τυ1 → συ2 → ςυ3 → ρυ4 → πυ5 → ου6 → ξυ7 → νυ8 → μυ9 → λυA → κυB → ιυC → θυD → ηυE → ζυF → ευG → δυH → γυI → βυJ → αυK → ΩυL → ΨυM → ΧυN → ΦυO → ΥυP → ΤυQ → ΣυR → ΡυS → ΠυT → ΟυU → ΞυV → ΝυW → ΜυX → ΛυY → ΚυZ → Ιυa → Θυb → Ηυc → Ζυd → Ευe → Δυf → Γυg → Βυh → Αυi → zυj → yυk → xυl → wυm → vυn → uυo → tυp → sυq → rυr |
| 4 | 4 max steps | s000 → rυυr → rqrs → 1υυτ → τ0τ2 |
| 5 | 41 max steps | q0000 → pυυυt → toυtq → u2υςp → σpυs3 → ςqυr4 → ρoυt5 → πpυs6 → οnυu7 → ξoυt8 → νmυv9 → μnυuA → λlυwB → κmυvC → ιkυxD → θlυwE → ηjυyF → ζkυxG → εiυzH → δjυyI → γhυΑJ → βiυzK → αgυΒL → ΩhυΑM → ΨfυΓN → ΧgυΒO → ΦeυΔP → ΥfυΓQ → ΤdυΕR → ΣeυΔS → ΡcυΖT → ΠdυΕU → ΟbυΗV → ΞcυΖW → ΝaυΘX → ΜbυΗY → ΛZυΙZ → ΚaυΘa → ΙYυΚb → ΛXυΛZ → ΜaυΘY → ΛaυΘZ |
| 6 | 209 max steps | 7000Hξ → ξH6ξδ8 → θζΚYFE → ΣΟaΘUS → pkWΜyu → fE4πηΕ → μΡOΥSA → βvnunK → Ζ86ξνe → θεQΣGE → ΣΝqrWS → pg0τΓu → τM4πΨ2 → ςμzi94 → ξγGδI8 → ζΜΘaXG → ΞeWΜΕW → hfPΤΔΓ → tOKΩΦq → Δw2ςmg → πN9λΧ6 → κβxkJC → ΧΗCθcO → ΥxTΟlQ → tlBιxq → ΧC2ςιO → πΦwlO6 → κwAκmC → ΩΧ9λNM → βΒxkhK → ΖKCθαe → ΥΕQΣeQ → trPΤrq → t2υυςq → σslwq3 → πB1σκ6 → ςκΧMB4 → ξΨyjM8 → ζΑEζiG → ΠΞHγVU → ΚlhΑxa → ZJBιβΛ → ΧΗaΘcO → xXTΟΜm → leAκΕy → ΩQCθΤM → ΥΒrqhQ → tK0ταq → τΕ2ςe2 → ςπPΤ54 → ξλspA8 → ζα2ςKG → πΞΔeV6 → κiOΥΑC → ΧvHγnO → Κx7νla → ζZBιΚG → ΧΞZΙVO → xiYΚΑm → bIAκγΙ → ΩΙWΜaM → ΒfXΛΔi → dOIβΦΗ → ΘwSΠmc → nV9λΞw → βi8μΑK → δΖHγdI → ΛΙRΡaZ → pbXΛΘu → dW4πΝΗ → μgSΠΓA → βnLΨvK → ΖΒ7νhe → ζRJαΣG → ΞΖpsdW → hS2ςΡΓ → πoKΩu6 → κΔ5οfC → κΧNΦNC → ΧywlkO → xEAκηm → ΩΡAκSM → ΩΒnuhM → ΒK6ξαi → θΕIβeE → ΣΘPΤbS → tpVΝtq → h42ςρΓ → πνKΩ86 → κεΓfGC → ΧΝMΧWO → zxfΓlk → NFBιζΨ → ΧΟyjUO → xkEζym → ΠEAκηU → ΩΡkxSM → ΒoCθui → ΥJ5οβQ → κΗspcC → ΧU2ςΟO → πxjyl6 → κFBιζC → ΨΦΞUON → zwizmk → HF9λζε → βΟΛXUK → ΖkcΖye → TRDηΣΡ → ΣqmvsS → p91σμu → ςγ4πI4 → ξμΘa98 → ζγWΜIG → ΞΙeΔaW → hYOΥΛΓ → vcKΩΗo → ΔU6ξΟg → θkMΧyE → ΣzDηjS → ΣpFεtS → Ξp3ρtW → ξh3ρΒ8 → ξζJαF8 → ζΟΕdUG → ΞkQΣyW → rhDηΒs → ΣK0ταS → τΕote2 → ςQ4πΤ4 → ξμrq98 → ζγ0τIG → τΞΘaV2 → ςiWΜΑ4 → ξfHγΔ8 → ζΚNΦZG → ΞxZΙlW → hZBιΚΓ → ΧaKΩΙO → ΔxXΛlg → dNBιΧΗ → ΧySΠkO → xnDηvm → ΣB7νκS → ζΨotMG → ΞΑ4πiW → μhHγΒA → βΚJαZK → ΗΕZΙed → ZTPΤΠΛ → tmaΘwq → XA2ςλΝ → παeΔK6 → κΕOΥeC → ΧvPΤnO → xt7νpm → ζB3ρκG → ξΨΝVM8 → ζΑgΒiG → ΞLHγΩW → ΚΓgΒga → ZMKΩΨΛ → ΔΑaΘig → XNHγΧΝ → ΚyeΔka → ZPDηΥΛ → ΣuaΘoS → pX5οΜu → κe4πΕC → μΧPΤNA → βyspkK → ΖE2ςηe → πΡQΣS6 → κrnurC → Χ6υυξO → οΦFεO7 → θΞvmVE → Σi8μΑS → δpHγtI → ΛΙ3ρaZ → ξbXΛΘ8 → ζdVΝΖG → ΞhRΡΒW → phJαΒu → ΖK4παe → μΕQΣeA → βrPΤrK → Ζsυυpe → ΕtCθpf → ΥP3ρΥQ → ξuspo8 → ζ62ςοG → πιΝVC6 → κΦgΒOC → ΧwKΩmO → Δx9λlg → βNBιΧK → ΧΖxkdO → xSCθΡm → ΥoAκuQ → Ωt5οpM → κΒ3ρhC → ξΧJαN8 → ζΖxkdG → ΞSCθΡW → ΥogΒuQ → tL5οΩq → κΓ2ςgC → πΧLΨN6 → κΒxkhC |