Base 13: Cycles Sequences: All Cycle Counts

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABC

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Frequency Cycle
Length
Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles---
21 cycle 72×(max) 3 nodes1B → 93 → 57
31 cycle 442×(max) 2 nodes5C7 → 6C6
43 cycles767×(max) 6 nodes5298 → 7296 → 70B6 → B0B2 → B832 → 9474
704×(max) 6 nodes30BA → B652 → 90B4 → B472 → 9294 → 7476
336×3 nodes50B8 → B292 → 9654
51 cycle 6,175×(max) 4 nodes83C85 → 92C94 → A4C73 → 95C64
61 cycle 18,551×(fixed) (max) 1 node 951A74
73 cycles27,404×2 nodes972C954 → A53C873
21,318×(max) 12 nodes951CA74 → B63C862 → A81CA43 → B75C652 → A61CA63 → B73C852 → A82C943 → A74C753 → 961CA64 → B62C962 → A92C933 → A75C653
1,653×2 nodesA71CA53 → B74C752
82 cycles104,016×(fixed) 1 node 9541A874
21,941×(max) 4 nodes641CCA87 → B840B842 → B9438832 → 96538764
93 cycles256,298×(max) 5 nodesA861CA643 → B761CA652 → B950CB732 → C983C8431 → B963C8632
28,834×(max) 5 nodesA751CA753 → B751CA752 → B951CA732 → B973C8532 → A862C9643
8,785×(max) 5 nodes9620CBA64 → C962C9631 → BA62C9622 → A982C9433 → A764C7653
104 cycles346,542×(fixed) 1 node 95441A8874
185,460×5 nodes99650B7634 → B651CCA762 → BA640B8622 → B983CC8432 → A984CC7433
97,774×(max) 9 nodes86661A6665 → 92CCCCCC94 → A832CC9943 → A9750B7533 → B7621AA652 → A881CCA443 → B965CC6632 → A962CC9633 → A973299533
16,857×4 nodesA8630B9643 → B763CC8652 → A9620BA633 → B875CC6542
111 cycle 1,352,065×(max) 14 nodesA8520CBA743 → C9762C96531 → BA640CB8622 → C9961CA6331 → BB762C96512 → B9940CB8332 → C9864C76431 → B9540CB8732 → C9852C97431 → BA652C97622 → A9840CB8433 → C8753C87541 → B9431CA9832 → B9764C76532
123 cycles2,284,802×(max) 10 nodes96543CC88764 → 985320BA9744 → B86541A87642 → A8441CCA8843 → B9663CC86632 → A9831CCA9433 → B97750B75532 → B96221AAA632 → A8885CC64443 → 986431A98644
416,101×(fixed) 1 node 954441A88874
3,240×2 nodesAA751CCA7523 → BA754CC77522
133 cycles4,735,472×(max) 10 nodesA86320CBA9643 → C97751CA75531 → BB7421CAA8512 → BA9862C964322 → A98651CA76433 → B77530CB97552 → C98421CAA8431 → BB8753C875412 → B98431CA98432 → B97653C876532
404,858×(max) 10 nodesA76530CB97653 → C87420CBA8541 → CB9642C986311 → BB9651CA76312 → BA9740CB85322 → C99752C975331 → BA6641CA86622 → B9861CCCA6432 → BA9742C985322 → A98652C976433
59,957×2 nodesA84321CAA9843 → B87753C875542
143 cycles8,409,595×(max) 15 nodesA8441CCCCA8843 → B98861CCA64432 → BA86521AA76422 → A88841CCA84443 → B96643CC886632 → A98521CCAA7433 → BA77640B865522 → B98421CCAA8432 → BA9764CC765322 → AA86410BB86423 → BA8743CC885422 → AA86430B986423 → B87643CC886542 → A974320BA98533 → B876641A866542
1,218,334×(fixed) 1 node 9544441A888874
29,758×(fixed) 1 node A97542CC987533
152 cycles17,301,794×(max) 14 nodesA966530CB976633 → C87640CCCB86541 → CB88621CAA64411 → BBA8641CA864212 → BA98641CA864322 → B987541CA875432 → B975431CA987532 → B976531CA976532 → B976420CBA86532 → C997530CB975331 → CB86641CA866411 → BBA641CCCA86212 → BBA9743C8853212 → B997642C9865332
82,053×2 nodesA844321CAA98843 → B877543C8875542
163 cycles24,168,112×(max) 11 nodes9988621CCAA64434 → BA765521AA776522 → A888221CCAAA4443 → BA87663CC8665422 → AA86320CCBA96423 → CA977631A9655321 → B986621CCAA66432 → BA97631CCA965322 → BA977430B9855322 → B9866421AA866432 → A88643CCCC886443
3,669,958×8 nodes7544443CC8888876 → 9844431CCA988844 → B965543CC8877632 → A9853310BB997433 → BA766641A8666522 → A8841CCCCCCA8443 → B9888421AA844432 → A886444388886443
2,583,672×(fixed) 1 node 95444441A8888874
174 cycles48,660,121×(max) 23 nodesA974430CCCB988533 → C9986540CB8764331 → CB865430CB9876411 → CBA85430CB9874211 → CBA97542C98753211 → BB986531CA9764312 → BA976530CB9765322 → C9976420CBA865331 → CB976530CB9765311 → CBA86420CBA864211 → CBA98641CA8643211 → BBA87541CA8754212 → BA986431CA9864322 → B9876541CA8765432 → B9754320CBA987532 → C9976531CA9765331 → BB766420CBA866512 → CA99630CCCB963321 → CBA98732C99543211 → BB986652C97664312 → B996530CCCB976332 → CA988432C99844321 → BA866543C88766422
3,128,347×17 nodesB9965430CB9876332 → C9866530CB9766431 → CB86530CCCB976411 → CBB97631CA9653111 → BBAA7640CB8652212 → CA998630CB9643321 → CB976651CA7665311 → BBA7420CCCBA85212 → CBA99752C97533211 → BB986641CA8664312 → BA97541CCCA875322 → BAA86540CB8764222 → C9986430CB9864331 → CB866541CA8766411 → BBA6430CCCB986212 → CBA98742C98543211 → BB986542C98764312
101,850×2 nodesA8444321CAA988843 → B8775443C88875542
5,604×2 nodesAAA7551CCCA775223 → BAA7554CCC7775222
182 cycles81,331,068×(max) 12 nodes954441CCCCCCA88874 → B8888730CCB9544442 → CA8754430B98875421 → CA8644421AA8886421 → B9884443CC88884432 → A9854443CC88887433 → 997544430B98887534 → B66544421AA8887662 → A884441CCCCA888443 → B988663CCCC8664432 → A99873221AAA954333 → 988766641A86665444
5,162,144×(fixed) 1 node 954444441A88888874
192 cycles140,964,394×(max) 8 nodesBA9754320CBA9875322 → C99876531CA97654331 → BB7665320CBA9766512 → CA997420CCCBA853321 → CBAA87641CA86542211 → BBA886430CB98644212 → CA9975441CA88753321 → BB8765431CA98765412
156,118×2 nodesA84444321CAA9888843 → B87754443C888875542
205 cycles143,711,009×(max) 12 nodes98544441CCCCA8888744 → B88865430CCB98764442 → CA87544320BA98875421 → CA88644421AA88864421 → B98844443CC888884432 → A98544443CC888887433 → 9975444430B988887534 → B665444421AA88887662 → A8844441CCCCA8888443 → B9886643CCCC88664432 → A998752221AAAA754333 → 9888766421AA86654444
53,770,927×3 nodesBA9765421CCAA8765322 → BA98764310BB98654322 → BA9866441CCA88664322
20,332,911×7 nodes9999654310BB98763334 → BA6666541CCA87666622 → BA96520CCCCCCBA76322 → CAAA975530B977532221 → CA88866221AAA6644421 → B9888443CCCC88844432 → A9987543CCCC88754333
7,729,548×(fixed) 1 node 9544444441A888888874
248,432×(fixed) 1 node BA9775431CCA98755322
214 cycles302,575,243×(max) 18 nodesBBA754320CCCBA9875212 → CBA9986540CB876433211 → CBA9765430CB987653211 → CBA9765320CBA97653211 → CBA9876420CBA86543211 → CBA9875430CB987543211 → CBA9765431CA987653211 → BBA8765320CBA97654212 → CA99875320CBA97543321 → CB98766531CA976654311 → BBA765320CCCBA9765212 → CBA9985530CB977433211 → CBA9766531CA976653211 → BBA876420CCCBA8654212 → CBA9976521CAA76533211 → BBA8876420CBA86544212 → CA99864430CB988643321 → CB97665441CA887665311
51,678,967×7 nodesBA9754320CCCBA9875322 → CAA9876440CB886543221 → CB98754430CB988754311 → CBA8654431CA988764211 → BBA8754430CB988754212 → CA99754431CA988753321 → BB87665431CA987665412
345,578×3 nodesBBB9765330CB997653112 → CAA9866420CBA86643221 → CB9887541CCCA87544311
217,519×2 nodesA844444321CAA98888843 → B877544443C8888875542
224 cycles336,170,600×(max) 12 nodes985444441CCCCA88888744 → B888654430CCB988764442 → CA875444320BA988875421 → CA886444421AA888864421 → B988444443CC8888884432 → A985444443CC8888887433 → 99754444430B9888887534 → B6654444421AA888887662 → A88444441CCCCA88888443 → B98866443CCCC888664432 → A9987542221AAAA8754333 → 98887664421AA886654444
114,610,090×(fixed) 1 node 95444444441A8888888874
97,564,253×7 nodesBA97654421CCAA88765322 → BA987653310BB997654322 → BA98666421CCAA86664322 → BA9876521CCCCAA7654322 → BAAA865531CCA977642222 → BA988764310BB986544322 → BA98664441CCA888664322
9,084×2 nodesAAAA75551CCCCA77752223 → BAAA75554CCCC777752222
234 cycles773,075,258×(fixed) 1 node CBA98765320CBA976543211
37,644,362×(max) 15 nodesBA665320CCCCCCCBA976622 → CAAA9765542C98776532221 → BA888653220CBAA97644422 → C9988754430CB9887544331 → CB866544431CA9888766411 → BBA7544430CCCB988875212 → CBA98765330CB9976543211 → CBA97665320CBA976653211 → CBA9876420CCCBA86543211 → CBBA9866421CAA866432111 → BBAA887541CCCA875442212 → BBA99666330CB9966633212 → CA9976662CCCCC966653321 → BAA99743330CB9998533222 → C9987666652C97666654331
23,425,576×6 nodesBBA7544320CCCBA98875212 → CBA99866430CB9866433211 → CBA9766541CCCA876653211 → BBBA8654210CBBA87642112 → CAAA9986430CB9864332221 → CB988766541CA8766544311
306,591×2 nodesA8444444321CAA988888843 → B8775444443C88888875542
243 cycles1,117,934,436×(max) 12 nodes9854444441CCCCA888888744 → B8886544430CCB9888764442 → CA8754444320BA9888875421 → CA8864444421AA8888864421 → B9884444443CC88888884432 → A9854444443CC88888887433 → 997544444430B98888887534 → B66544444421AA8888887662 → A884444441CCCCA888888443 → B988664443CCCC8888664432 → A99875442221AAAA88754333 → 988876644421AA8886654444
113,689,940×8 nodes98886665421CCAA876664444 → BA66544320CCCCBA98876622 → CAAA87653220BAA976542221 → CA888886421CCAA864444421 → BBA866444421AA8888664212 → AA88844443CCCC8888844423 → A998664443CCCC8888664333 → 999965542221AAAA87763334
20,053,311×(fixed) 1 node 954444444441A88888888874
255 cycles1,290,137,646×(max) 8 nodesBBA76544320CCCBA988765212 → CBA998664320CBA9866433211 → CBA98766541CCCA8766543211 → BBBA86643210CBBA986642112 → CAAA9987541CCCA8754332221 → BBAA87765430CB98765542212 → CA9987543220CBAA987543321 → CB9887665431CA98766544311
322,856,847×7 nodesBA9875444320CBA9888754322 → C99876544431CA98887654331 → BB7665444320CBA9888766512 → CA997544320CCCBA988753321 → CBAA87755430CB98775542211 → CBA987543221CAAA987543211 → BBA888765431CA98765444212
232,444,894×(fixed) 1 node CBA987654320CBA9876543211
6,668,693×(fixed) 1 node CCBA98765320CBA9765432101
374,903×2 nodesA84444444321CAA9888888843 → B87754444443C888888875542
263 cycles1,648,065,396×(max) 12 nodes98544444441CCCCA8888888744 → B88865444430CCB98888764442 → CA87544444320BA98888875421 → CA88644444421AA88888864421 → B98844444443CC888888884432 → A98544444443CC888888887433 → 9975444444430B988888887534 → B665444444421AA88888887662 → A8844444441CCCCA8888888443 → B9886644443CCCC88888664432 → A998754442221AAAA888754333 → 9888766444421AA88886654444
1,026,230,307×2 nodesBA988876521CCCCAA765444322 → BAAA86664321CCAA9866642222
33,179,432×(fixed) 1 node 9544444444441A888888888874
276 cycles2,124,518,460×(max) 5 nodesBBAAA8876530CCCB97654422212 → CBA9997664320CBA98665333211 → CBA987666530CCCB97666543211 → CBBA88644210CCCBBA886442111 → CBBBA99766421CAA86653321111
1,739,172,760×(fixed) 1 node CBA9876544320CBA98876543211
39,904,610×(fixed) 1 node CCBA987654320CBA98765432101
6,668,693×(fixed) 1 node CCCBA98765320CBA97654321001
519,472×2 nodesA844444444321CAA98888888843 → B877544444443C8888888875542
13,428×2 nodesAAAAA755551CCCCCA7777522223 → BAAAA755554CCCCC77777522222
284 cycles5,283,588,500×(max) 12 nodes985444444441CCCCA88888888744 → B888654444430CCB988888764442 → CA875444444320BA988888875421 → CA886444444421AA888888864421 → B988444444443CC8888888884432 → A985444444443CC8888888887433 → 99754444444430B9888888887534 → B6654444444421AA888888887662 → A88444444441CCCCA88888888443 → B98866444443CCCC888888664432 → A9987544442221AAAA8888754333 → 98887664444421AA888886654444
253,380,191×7 nodes99996554443310BB998887763334 → BA66666544421CCAA88876666622 → BA98664320CCCCCCCCBA98664322 → CAAA9988554410BB887744332221 → CAA88866444421AA888866444221 → B98884444443CCCC888888844432 → A99875444443CCCC888888754333
49,823,192×(fixed) 1 node 95444444444441A8888888888874
61,584×(fixed) 1 node AA9977554432CCCC998877553323
299 cycles3,908,442,971×(max) 5 nodesBBAAA88766530CCCB976654422212 → CBA99976643210CBBA98665333211 → CBAA987666530CCCB976665432211 → CBBA987644210CCCBBA8865432111 → CBBBA998665321CAA976643321111
2,625,975,232×3 nodesCBA9888765320CCCBA97654443211 → CBBA9876553320CBA997765432111 → CBAA9876653220CBAA97665432211
1,175,460,587×(fixed) 1 node CBA98765444320CBA988876543211
129,789,476×(fixed) 1 node CCBA9876544320CBA988765432101
39,904,610×(fixed) 1 node CCCBA987654320CBA987654321001
10,801,338×2 nodesCBAA988766420CCCBA86654432211 → CBBA9976653220CBAA97665332111
6,668,693×(fixed) 1 node CCCCBA98765320CBA976543210001
984,160×(fixed) 1 node BBA9877554331CCCA998775543212
627,840×2 nodesA8444444444321CAA988888888843 → B8775444444443C88888888875542
30+---Not showing digit sets 30+ due to verbosity.