Base 188: Cycles Sequences: All Cycle Counts

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCDEF
GHIJKLMNOPQRSTUV
WXYZabcdefghijkl
mnopqrstuvwxyzΑΒ
ΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣ
ΤΥΦΧΨΩαβγδεζηθικ
λμνξοπρςστυφχψωА
БВГДЕЖЗИЙКЛМНОПР
СТУФХЦЧШЩЪЫЬЭЮЯа
бвгдежзийклмнопр
стуфхцчшщъыьэюя

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Frequency Cycle
Length
Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles---
211 cycles3,366×(max) 18 nodes0キ → ガ1 → オ3 → ウ7 → эF → нV → НΒ → yР → ΕК → sЦ → Ρψ → Uо → Пz → ΓМ → wТ → ΙЖ → kЮ → ιθ
3,366×(max) 18 nodes4ォ → イ9 → щJ → еd → χΣ → Sр → Уv → ΛД → gв → ρΩ → Gь → лX → ЙΖ → qШ → Φτ → Mц → Яj → λζ
3,366×(max) 18 nodesAィ → чL → бh → οβ → Cァ → уP → Щp → Ψς → Iъ → зb → БΞ → aи → ГΜ → eд → υΥ → Oф → Ыn → γξ
1,683×9 nodes6ェ → яD → сR → Хt → ΟА → Yк → ЗΘ → mЬ → εμ
1,122×6 nodes2カ → エ5 → アB → хN → Эl → ηκ
1,122×6 nodes8ゥ → ыH → йZ → ЕΚ → iа → νδ
1,122×6 nodesEю → пT → Сx → ΗИ → oЪ → απ
1,122×6 nodesWм → ЛΔ → uФ → ΝВ → cж → ωΠ
561×3 nodesKш → гf → σΧ
561×3 nodesQт → Чr → Τφ
187×(fixed) 1 node ΑО
31 cycle 1,124,992×(fixed) (max) 1 node θキι
411 cycles4,959,774×(max) 23 nodesK3ォщ → ウдd8 → эφΣG → нRрW → ХМΒu → ΟxРБ → ΗZиЙ → ЕpШΛ → Ψhаσ → οJшγ → еBァe → хφΣO → ЭRрm → Хζκu → Ο3ォБ → ウZи8 → эДΚG → нhаW → НξβΓ → yBァС → хΖИO → ЭpШm → ηΧςλ
4,907,410×(max) 23 nodesaJшй → еДΚe → χhаΤ → οRрγ → ХBァu → хΞАO → ЭZиm → ЕζκΛ → i3ォб → ウξβ8 → эBァG → хмVO → ЭМΒm → ηxРλ → Η3ォЙ → ウpШ8 → эΧςG → нJшW → еМΒe → χxРΤ → ΗRрЙ → ХpШu → ΨΞАσ
4,899,684×(max) 23 nodesKBァщ → хдdO → ЭφΣm → ηRрλ → Х3ォu → ウΞА8 → эZиG → нДΚW → НhаΓ → οxРγ → ΗBァЙ → хpШO → ЭΧςm → ηJшλ → е3ォe → ウφΣ8 → эRрG → нФtW → НΞАΓ → yZиС → ЕΖИΛ → qhаЩ → οΧςγ
4,879,724×(max) 23 nodesiBァб → хξβO → ЭBァm → хζκO → Э3ォm → ウζκ8 → э3ォG → ウмV8 → эМΒG → нxРW → НΖИΓ → ypШС → ΨΖИσ → qJшЩ → еΧςe → χJшΤ → еRрe → ХφΣu → ΟRрБ → ХZиu → ЕΞАΛ → iZиб → ЕξβΛ
4,878,080×(max) 23 nodesSBァс → хФtO → ЭΞАm → ηZиλ → Е3ォΛ → ウhа8 → эξβG → нBァW → хМΒO → ЭxРm → ηΖИλ → q3ォЩ → ウΧς8 → эJшG → ндdW → НφΣΓ → yRрС → ХΖИu → ΟpШБ → ΨZиσ → ЕJшΛ → еhаe → χξβΤ
4,877,632×(max) 23 nodesa3ォй → ウДΚ8 → эhаG → нξβW → НBァΓ → хxРO → ЭΖИm → ηpШλ → Ψ3ォσ → ウJш8 → эдdG → нφΣW → НRрΓ → ХxРu → ΟΖИБ → qZиЩ → ЕΧςΛ → iJшб → еξβe → χBァΤ → хRрO → ЭФtm → ηΞАλ
4,872,106×(max) 23 nodesΗpШЙ → ΨpШσ → ΨJшσ → еJшe → еφΣe → χRрΤ → ХRрu → ХΞАu → ΟZиБ → ЕZиΛ → ЕhаΛ → οhаγ → οBァγ → хBァO → хЬlO → Эζκm → η3ォλ → ウ3ォ8 → ウьF8 → эмVG → нМΒW → НxРΓ → ΗxРЙ
4,866,642×(max) 23 nodesS3ォс → ウФt8 → эΞАG → нZиW → НДΚΓ → yhаС → οΖИγ → qBァЩ → хΧςO → ЭJшm → еζκe → χ3ォΤ → ウRр8 → эФtG → нΞАW → НZиΓ → ЕxРΛ → ΗhаЙ → οpШγ → ΨBァσ → хJшO → еЬle → χζκΤ
4,864,771×(max) 23 nodesC3ォア → ウфN8 → эЬlG → нζκW → Н3ォΓ → ウxР8 → эΖИG → нpШW → НΧςΓ → yJшС → еΖИe → χpШΤ → ΨRрσ → ХJшu → еΞАe → χZиΤ → ЕRрΛ → Хhаu → οΞАγ → aBァй → хДΚO → Эhаm → οζκγ
4,862,434×(max) 23 nodesiRрб → Хξβu → ΟBァБ → хZиO → ЭДΚm → ηhаλ → ο3ォγ → ウBァ8 → эфNG → нЬlW → НζκΓ → y3ォС → ウΖИ8 → эpШG → нΧςW → НJшΓ → еxРe → χΖИΤ → qRрЩ → ХΧςu → ΟJшБ → еZиe → ЕφΣΛ
4,858,900×(max) 23 nodesSJшс → еФte → χΞАΤ → aRрй → ХДΚu → ΟhаБ → οZиγ → ЕBァΛ → хhаO → Эξβm → ηBァλ → х3ォO → ウЬl8 → эζκG → н3ォW → ウМΒ8 → эxРG → нΖИW → НpШΓ → ΨxРσ → ΗJшЙ → еpШe → χΧςΤ
52 cycles2,063,094,330×(max) 4 nodesОzキОΒ → ПzキОΑ → ПΒキМΑ → ОΑキНΒ
35,530×2 nodesιηキιι → ιキキキθ
6+---Not showing digit sets 6+ due to verbosity.