Base 172: Cycles Sequences: All Cycle Counts

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCDEF
GHIJKLMNOPQRSTUV
WXYZabcdefghijkl
mnopqrstuvwxyzΑΒ
ΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣ
ΤΥΦΧΨΩαβγδεζηθικ
λμνξοπρςστυφχψωА
БВГДЕЖЗИЙКЛМНОПР
СТУФХЦЧШЩЪЫЬЭЮЯа
бвгдежзийклмнопр
стуфхцчшщъыьэюя

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Frequency Cycle
Length
Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles---
21 cycle 14,706×(max) 86 nodes0ь → ы1 → щ3 → х7 → нF → ЭV → χΒ → iР → Φδ → 6ц → пD → бR → Еt → yА → oК → Ιπ → UЮ → ωz → mМ → Νμ → Mж → Пj → Τζ → Aт → зL → Сh → Ψβ → 2ъ → ч5 → сB → еN → Нl → Οκ → Iк → Чb → λΞ → Kи → Уf → γΧ → 4ш → у9 → йJ → Хd → ηΣ → Cр → гP → Йp → Ης → YЪ → ρΘ → WЬ → υΔ → eФ → εΥ → 8ф → лH → ЩZ → οΚ → Sа → Гv → uД → wВ → sЖ → Αψ → kО → Ρθ → Eо → ЯT → Бx → qИ → Ετ → cЦ → ιΠ → Gм → ЫX → σΖ → aШ → νΜ → Oд → Лn → Λξ → Qв → Зr → Γφ → gТ → αΩ
31 cycle 862,752×(fixed) (max) 1 node Ωьα
430 cycles1,512,730×(max) 7 nodesKBрй → еФdO → НζΣm → ΟBрλ → еJиO → ХМle → ηΞκΤ
1,497,423×(max) 7 nodesC3шс → хдN8 → нМlG → ЭΞκW → χJиΓ → ХhРe → ηΧβΤ
1,478,868×(max) 7 nodesaRаЩ → ЕξΚu → yRаБ → ЕpИu → ΗxАσ → qZШЙ → οΖςΛ
1,378,022×(max) 7 nodesyhРБ → ΨpИγ → Η3шσ → хZШ8 → нξΚG → ЭRаW → ЕφΒu
1,351,086×(max) 7 nodesΟhРλ → ΨJиγ → Х3шe → хζΣ8 → нBрG → еЬVO → НφΒm
1,325,010×(max) 7 nodesΨ3шγ → х3ш8 → хмF8 → нЬVG → ЭφΒW → χhРΓ → ΨhРγ
1,321,024×(max) 7 nodesqJиЙ → ХΖςe → ηZШΤ → οBрΛ → еRаO → НДtm → ΟxАλ
1,320,952×(max) 7 nodesypИБ → ΗpИσ → ΗZШσ → οZШΛ → οRаΛ → ЕRаu → ЕxАu
1,318,840×(max) 7 nodesaJиЩ → ХξΚe → ηRаΤ → ЕBрu → еxАO → НpИm → ΟΖςλ
1,317,836×(max) 7 nodesiRаС → ЕΧβu → y3шБ → хpИ8 → нΖςG → ЭZШW → χξΚΓ
1,316,144×(max) 7 nodesiBрС → еΧβO → Н3шm → хΞκ8 → нJиG → ЭФdW → χζΣΓ
1,311,756×(max) 7 nodesiJиС → ХΧβe → η3шΤ → хBр8 → ндNG → ЭМlW → χΞκΓ
1,311,580×(max) 7 nodesSJиб → ХДte → ηxАΤ → qBрЙ → еΖςO → НZШm → οΞκΛ
1,310,852×(max) 7 nodesS3шб → хДt8 → нxАG → ЭpИW → χΖςΓ → iZШС → οΧβΛ
1,305,366×(max) 7 nodesSBрб → еДtO → НxАm → ΟpИλ → ΗJиσ → ХZШe → οζΣΛ
1,290,348×(max) 7 nodesK3шй → хФd8 → нζΣG → ЭBрW → еφΒO → НhРm → ΨΞκγ
1,289,008×(max) 7 nodesa3шЩ → хξΚ8 → нRаG → ЭДtW → χxАΓ → qhРЙ → ΨΖςγ
1,146,372×(max) 7 nodesΨRаγ → Е3шu → хxА8 → нpИG → ЭΖςW → χZШΓ → οhРΛ
1,146,340×(max) 7 nodesηJиΤ → ХBрe → еζΣO → НBрm → еΞκO → НJиm → ХΞκe
1,146,212×(max) 7 nodesχ3шΓ → хhР8 → нΧβG → Э3шW → хφΒ8 → нhРG → ЭΧβW
1,138,228×(max) 7 nodesyBрБ → еpИO → НΖςm → ΟZШλ → οJиΛ → ХRаe → ЕζΣu
1,138,228×(max) 7 nodesΗBрσ → еZШO → НξΚm → ΟRаλ → ЕJиu → ХxАe → ηpИΤ
1,138,164×(max) 7 nodesq3шЙ → хΖς8 → нZШG → ЭξΚW → χRаΓ → ЕhРu → ΨxАγ
1,138,164×(max) 7 nodesΗhРσ → ΨZШγ → ο3шΛ → хRа8 → нДtG → ЭxАW → χpИΓ
1,138,132×(max) 7 nodesΟJиλ → ХJиe → ХζΣe → ηBрΤ → еBрO → еМlO → НΞκm
1,138,068×(max) 7 nodesΨBрγ → е3шO → хМl8 → нΞκG → ЭJиW → ХφΒe → ηhРΤ
1,138,068×(max) 7 nodesΟ3шλ → хJи8 → нФdG → ЭζΣW → χBрΓ → еhРO → НΧβm
1,130,116×(max) 7 nodesqRаЙ → ЕΖςu → yZШБ → οpИΛ → ΗRаσ → ЕZШu → οxАΛ
1,130,020×(max) 7 nodesaBрЩ → еξΚO → НRаm → ЕΞκu → yJиБ → ХpИe → ηΖςΤ
1,129,796×(max) 7 nodesi3шС → хΧβ8 → н3шG → хЬV8 → нφΒG → ЭhРW → χΧβΓ
53 cycles885,490,980×3 nodesГtьДw → ЕuьГu → ДxьАv
443,382,054×(max) 4 nodesГuьГw → ДtьДv → ЕvьВu → ДwьБv
29,754×2 nodesαΨьαα → αьььΩ
6+---Not showing digit sets 6+ due to verbosity.