Base 180: Cycles Sequences: All Cycle Counts

Blog: The First Pixel: Kaprekar's Constant 6174

Radix Character Encoding
0123456789ABCDEF
GHIJKLMNOPQRSTUV
WXYZabcdefghijkl
mnopqrstuvwxyzΑΒ
ΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣ
ΤΥΦΧΨΩαβγδεζηθικ
λμνξοπρςστυφχψωА
БВГДЕЖЗИЙКЛМНОПР
СТУФХЦЧШЩЪЫЬЭЮЯа
бвгдежзийклмнопр
стуфхцчшщъыьэюя

Color Key
OrangeFixed Pointnumber that becomes itself after one iteration
GreenFinal Numbersall numbers eventually reached, from all cycles
PurpleCycle Startiterations include entry into cycle, assuming it repeats
RedFull Cycleiterations include entire cycle, proving it repeats
BlueStart Numberssubset (optimization) of all numbers; minimal for full coverage
GrayNo Resultsany calculation that has no results

Digits # Full Cycles
(excluding zero)
Frequency Cycle
Length
Full Cycles
(excluding zero)
(bold = exactly one cycle [excluding zero])
10 cycles---
21 cycle 16,110×(max) 90 nodes0ゥ → イ1 → ア3 → э7 → хF → еV → ЕΒ → qР → Ντ → Uж → Зz → uМ → ΕВ → kЦ → αθ → 6ю → чD → йR → Нt → ΗА → gЪ → ιΩ → 8ь → уH → бZ → χΚ → aа → υΜ → Wд → ГΔ → mФ → Φμ → Eц → зT → Йx → yИ → wК → ΑЖ → sО → Ιψ → cЮ → ρΠ → Oм → Уn → Τξ → Iт → Яb → σΞ → Sи → Лv → ΓД → oТ → Ρπ → Mо → Чj → γζ → 2ィ → я5 → щB → нN → Хl → Ψκ → Aъ → пL → Щh → ηβ → 4ァ → ы9 → сJ → Эd → οΣ → Kр → Ыf → λΧ → Cш → лP → Сp → Ος → Qк → Пr → Λφ → Yв → ωΘ → eЬ → νΥ → Gф → гX → БΖ → iШ → εδ
31 cycle 988,080×(fixed) (max) 1 node δゥε
427 cycles2,568,974×(max) 12 nodesiBшЩ → нζβO → Х3ァm → эΧκ8 → хBшG → ндVO → ХДΒm → ΨpРλ → ΟBшσ → нRиO → ХМtm → ΨΖАλ
2,567,516×(max) 12 nodesKBшс → нЬdO → ХξΣm → ΨJрλ → ЭBшe → нξΣO → ХJрm → ЭΧκe → οBшΤ → нJрO → ЭФle → οΧκΤ
2,521,146×(max) 12 nodesaRиб → НφΚu → ΗZаБ → χhШΛ → ηZаγ → χ3ァΛ → эZа8 → хφΚG → еZаW → ЕφΚΓ → qZаС → χΞςΛ
2,512,114×(max) 12 nodesy3ァЙ → эxИ8 → хxИG → еxИW → ЕxИΓ → ypРЙ → ΟxИσ → yRиЙ → НxИu → ΗxИБ → yhШЙ → ηxИγ
2,506,169×(max) 12 nodesC3ァщ → эмN8 → хФlG → еΧκW → ЕBшΓ → нpРO → ХΞςm → ΨRиλ → НBшu → нΖАO → ХhШm → ηΧκγ
2,416,510×(max) 12 nodesΗpРБ → ΟhШσ → ηRиγ → Н3ァu → эΖА8 → хhШG → еζβW → Е3ァΓ → эpР8 → хΞςG → еRиW → НДΒu
2,334,576×(max) 12 nodesqJрС → ЭΞςe → οRиΤ → НJрu → ЭΖАe → οhШΤ → ηJрγ → Э3ァe → эξΣ8 → хJрG → еЬdW → ЕξΣΓ
2,330,502×(max) 12 nodesΗhШБ → ηhШγ → η3ァγ → э3ァ8 → эфF8 → хдVG → еДΒW → ЕpРΓ → ΟpРσ → ΟRиσ → НRиu → НΖАu
2,326,192×(max) 12 nodesiRиЩ → Нζβu → Η3ァБ → эhШ8 → хζβG → е3ァW → эДΒ8 → хpРG → еΞςW → ЕRиΓ → НpРu → ΟΖАσ
2,322,840×(max) 12 nodesSBшй → нМtO → ХΖАm → ΨhШλ → ηBшγ → н3ァO → эФl8 → хΧκG → еBшW → нДΒO → ХpРm → ΨΞςλ
2,322,390×(max) 12 nodesqBшС → нΞςO → ХRиm → НΧκu → ΗBшБ → нhШO → Хζβm → Ψ3ァλ → эBш8 → хмNG → еФlW → ЕΧκΓ
2,316,702×(max) 12 nodesK3ァс → эЬd8 → хξΣG → еJрW → ЭДΒe → οpРΤ → ΟJрσ → ЭRиe → НξΣu → ΗJрБ → ЭhШe → οζβΤ
2,315,012×(max) 12 nodesa3ァб → эφΚ8 → хZаG → еφΚW → ЕZаΓ → χpРΛ → ΟZаσ → χRиΛ → НZаu → χΖАΛ → iZаЩ → χζβΛ
2,314,636×(max) 12 nodesS3ァй → эМt8 → хΖАG → еhШW → ЕζβΓ → q3ァС → эΞς8 → хRиG → еМtW → ЕΖАΓ → qhШС → ηΞςγ
2,306,748×(max) 12 nodesSJрй → ЭМte → οΖАΤ → iJрЩ → Эζβe → ο3ァΤ → эJр8 → хЬdG → еξΣW → ЕJрΓ → ЭpРe → οΞςΤ
2,117,760×(max) 12 nodesi3ァЩ → эζβ8 → х3ァG → эдV8 → хДΒG → еpРW → ЕΞςΓ → qRиС → НΞςu → ΗRиБ → НhШu → ηΖАγ
1,253,732×6 nodesaJрб → ЭφΚe → οZаΤ → χJрΛ → ЭZаe → χξΣΛ
1,067,472×6 nodesΟ3ァσ → эRи8 → хМtG → еΖАW → ЕhШΓ → ηpРγ
712,320×4 nodesΨZаλ → χBшΛ → нZаO → ХφΚm
709,488×4 nodesyBшЙ → нxИO → ХxИm → ΨxИλ
709,392×4 nodesΨBшλ → нBшO → нФlO → ХΧκm
703,728×4 nodesaBшб → нφΚO → ХZаm → χΧκΛ
535,900×3 nodesοJрΤ → ЭJрe → ЭξΣe
531,180×3 nodesyJрЙ → ЭxИe → οxИΤ
358,992×2 nodesХBшm → нΧκO
351,912×2 nodesyZаЙ → χxИΛ
178,812×(fixed) 1 node χZаΛ
52 cycles1,663,801,778×(fixed) 1 node ЙxゥИy
32,578×(max) 2 nodesεγゥεε → εゥゥゥδ
6+---Not showing digit sets 6+ due to verbosity.